Eigenschaften und Anwendungen

Titannitrid stellt eine Verbindung von Titan und Stickstoff dar, bei der der Anteil von Stickstoff variieren kann. Dies wird durch die Formel TiNx ausgedrückt, wobei x Werte zwischen 0,4 und 1 annehmen kann. Es ist bei Raumtemperatur fest und weist eine Dichte von 5,2 g/cm3 auf, was ungefähr dem doppelten von Glas entspricht, aber immer noch geringer ist, als bei den meisten Metallen. TiN ist sehr hart, vergleichbar zu Korund, der in Schleifmitteln, wie z.B. in Schleifpapier eingesetzt wird (Vickershärte von TiN 2400, Korund (Aluminiumoxid) 2100). Noch härter ist beispielsweise Titancarbid (3200). Zudem leitet TiN den elektrischen Strom ähnlich gut wie Stahl. Der Schmelzpunkt liegt bei ca. 3000 °C, es ist in Wasser unlöslich und wird auch von Säuren nur wenig angegriffen. Auch bei höheren Temperaturen reagiert es nur wenig mit Metallen. Wenn TiN im großen Maßstab, ohne auf besondere Reinheit zu achten hergestellt wird, nennt man es technisches TiN, das meist eine geringe Menge Sauerstoff enthält, der sich nur schwer abtrennen lässt.

 

Titannitrid wird vor allem als Dünnschicht (Dicke bis zu wenigen Mikrometern) bzw. mehrlagigen Dünnschichtsystemen zum Verschleißschutz bei Werkzeugen eingesetzt. Zugleich verleiht es beschichteten Teilen eine goldähnliche Farbe. Titannitrid-Pulver (Korngröße im Bereich Nano- bis mehrere Mikrometer) dient als Zuschlagstoff zur Herstellung von verschleißfesten Sinterwerkstoffen wie Hartmetallen, Siliziumnitrid und Cermets. Auch findet es als Additiv von Kunststoffen, insbesondere für PET-Flaschen, Verwendung. TiN verbessert hier die thermischen Eigenschaften des PET und führt zu höheren Produktionszahlen bei der Herstellung der Flaschen. Laut deutscher Bedarfsgegenständeverordnung ist die Zugabe von Titannitrid auf 20 mg TiN pro kg PET beschränkt [4]. Reines TiN bietet sich für die Herstellung von Keramiktiegeln oder Aufdampfschiffchen zum Schmelzen von Metallen an.

 

Vorkommen und Herstellung

Titannitrid ist ein technisches Produkt, das nicht in abbauwürdiger Form in der Natur vorkommt. Als Pulver kann es durch die Reduktion von TiO2 durch Kohlenstoff in einer stickstoffhaltigen Atmosphäre gewonnen werden. Auch Titanhydrid, Titanschwamm und Abfälle von reinem Titan reagieren mit Stickstoff zu TiN. Nanokristalline Pulver lassen sich durch die Umsetzung von Titantetrachlorid (TiCl4) und Stickstoff oder Ammoniak (NH4) in einer Wasserstoffatmosphäre gewinnen.

Dünne Titannitridschichten in der Stärke bis zu einigen Mikrometern erzeugt man durch physikalische oder chemische Abscheidung aus der Gasphase (engl. Physical Vapour Deposition (PVD), Chemical Vapour Deposition (CVD)). Die physikalischen Verfahren beruhen darauf, dass ein Titantarget entweder in einem Ofen oder lokal durch ein Plasma oder einen Elektronenstrahl in einer Stickstoffatmosphäre zum Verdampfen gebracht wird und sich als Titannitrid auf dem zu beschichteten Substrat abscheidet. Die Abscheidetemperaturen liegen unter 500 °C. Bei chemischen Verfahren nutzt man meist Titantetrachlorid (TiCl4) als Titanquelle. Die Abscheidetemperatur liegt allgemein über 700 °C. Die Wachstumsgeschwindigkeiten können bis zu einigen Mikrometern pro Stunde betragen.

 

Literatur

  1. Kieffer, R & Benesovsky, F (1963). Hartstoffe, Springer-Verlag, Wien.
  2. Schedler, W (1988). Hartmetall für den Praktiker, VDI-Verlag GmbH, Düsseldorf.
  3. Richter, V & Mueller, K (2007). In Schatt,Wieters, Kieback: Pulvermetallurgie,Technologien und Werkstoffe, Springer Verlag, 2. erweiterte Auflage. ISBN 978-3-540-23652-8 .
  4. Bedarfsgegenständeverordnung (BedGgstV) (2011), gesetze-im-internet.de (Stand letzter Zugang: Jul 2011).