

GEEÖRDERT VOM

Bundesministerium für Bildung und Forschung

BMBF Projekt NanoCare In vitro Zellsysteme: Zentrale Ergebnisse

Jürgen Schnekenburger

Medizinische Klinik B Westfälische Wilhelms-Universität Münster

- Standardisierung der Zellkulturmodelle
- Adsorption von Proteinen an Nanopartikel
- Karlsruher Zell-Expositionssystem
- AFM-Analyse von Nanopartikel-Zell Interaktionen
- Transport von Partikeln durch epitheliale Zellmonolayer
- Vergleichende Analyse von Test und Zellkultursystemen zum in vitro Toxizitätstest
- IBE Vector Modell primärer Alveolarmakrophagen
- Zusammenfassung und Ausblick

In vitro Zellsysteme: Zielsetzung

Ziel: Beurteilung zellulärer Reaktionen in Gegenwart von Nanopartikeln abhängig von Partikelkonzentration, -größe, chemischer Zusammensetzung und Partikeloberfläche

- Welche Zelltypen müssen untersucht werden, um Partikeleffekte zu charakterisieren?
- Welche Testsysteme werden f
 ür die Beurteilung der biologischen Auswirkungen ben
 ötigt?
- Welche Testsysteme sind f
 ür die Untersuchung von Nanopartikeln geeignet?

GEEÖRDERT VOM

Bundesministerium für Bildung und Forschung

Entwicklung standardisierter Testsysteme (SOP) mit einer definierten Gruppe von Zelltypen und Assays

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Nanopartikel Protein Adsorption

GEEÖRDERT VOM

Bundesministerium für Bildung und Forschung

Adsorption von Proteinen aus broncheoalveolärer Lavage-Flüssigkeit an Nanopartikel: Partikel zeigen unterschiedliche Adsorptionsmuster.

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

GEFÖRDERT VOM nan Care Nanopartikel Interferenz mit Testsystemen: Bundesministerium für Bildung und Forschung **Optische Interferenz (Carbon Black)** auf A549 Zellen 120 120 100 100 DCF / ROS DCF fluorescence [%] DCF fluorecence [%] 80 80 10µg/cm² ■ 10µg/cm² 60 ■ 1µg/cm² 60 ■ 1µa/cm² 0,1µg/cm² 0,1µg/cm² 40 40 Medium Medium 20 20 0 100 10 100 10 DCF concentration [nM] DCF concentration [nM] auf A549 Zellen 400 400 MTT / RedOx Relative light absorption [%] Relative light absorption [%] 300 300 ■ 10 µg/cm² ■ 1 µg/cm² 200 ■ 10µg/cm² 200 ■ 0,1 µg/cm² ■ 1µg/cm² Medium ■ 0,1µg/cm² 100 100 Medium 0 0 0,35 0.21 0,09 0,46 0,21 0,13 0,09 Light absoprtion without nanoparticles [RLU] Light absorption without nanoparticles [RLU]

nan@are_ "Checkliste" für in-vitro Tests mit Nanopartikeln

- Dispersionen:
 - Dispersions Protokoll
 - Agglomerat Größenverteilung und Agglomerationsstatus
 - Zetapotential
 - Benetzbarkeit und Agglomeration/Desagglomeration nach Adsorption von Lösungsbestandteilen
 - Adsorption von Lösungsbestandteilen, die Passivierung, Löslichkeit und Bindung beeinflussen können.
- Mikrobiologische Eigenschaften
 - Sterilität
 - Endotoxin Konzentration
 - Einfluß auf Endotoxin Tests

- Interferenz mit Testsystemen
 - Reaktion mit oder Adsorption von Testreagenzien
 - Absorbtion oder Streuung des emittierten Lichts
 - Quenchen der emittierten Fluoreszenz

Schulze et al., "Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media" *Nanotoxicology, 2008*

Left: scheme of the Karlsruhe Exposure System with the (1) size selective inlet, (2) the water vapour dosage for humidification (3), the conditioning reactor for a constant aerosol with 37°C and 85% r.h., (4) the VITROCELL® exposure chambers containing the Transwell® membrane inserts and the sensor of the (5) quartz crystal microbalance. Right: photograph of the fully automated and temperature controlled prototype during an outside measurement of environmental aerosols.

Karlsruhe Exposition System

GEEÖRDERT VOM

Opened and closed VITROCELL® exposure chambers with water temperature control and medium for supplying the cell cultures with nutrients.

Scheme of the exposure of a cell culture towards aerosol at the air liquid interface consisting of the aerosol inlet, the cell culture insert and the medium container.

medium

aerosol inlet

Cell culture

Transwell[®] inserts

Membrane with pores (Ø 400 nm)

Expositions Experimente mit TiO₂ an humanen Lungenepithelzellen (A549) zeigten keine signifikante Veränderung der Zellviabilität nach 2 und 4 h Exposition.

Ergebnisse: FZK-ITG and ITC NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Distance from cell surface [µm] Typical force distance curve for a coated AFM-tip on a living cell with a dwell-time of 30

-300

400

s. The red curve shows the approach, the green one the tips movement during the contact (dwell-time) and the blue one describes the retraction.

Rupture events can occur several microns away from the surface. This indicates the formation of membrane tethers (thin nano-tubes that consist of lipids) with rupture forces around 50 pN that appear for all analyzed particles.

Transport von Metalloxid Nanopartikeln über Zellmonolayer

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Nano- particle	Permeation through naked filter after 24 h [%]	Transport through cells [%]	Cellular uptake & filter washout [%]
ZrO ₂	35 ± 4.5	0	2.7 ± 2.6
TiO ₂ P25	34.8 ± 4.1	0	0
Böhmit I	46.7 ± 19.1	0	0

Zusammenfassung der Transport-Assays mit Metalloxid Nanopartikeln. Für keinen der getesteten Partikel konnte ein Transport durch die Zellbarriere nachgewiesen werden.

nan@are

In vitro Toxizitätstests: NanoCare Zelllinien

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

	Туре	Origin	Species	Source
Mono-Mac-6	Connective tissue	Monocytes/Macrophages, leukemia	Homo sapiens	DSMZ
NIH-3T3	Connective tissue	Embryo fibroblasts	Mus musculus	DSMZ
RAW 264.7	Connective tissue	Macrophages	Mus musculus	ATCC
A-549	Epithelium	Lung epithelium, carcinoma	Homo sapiens	DMSZ
CACO-2	Epithelium	Colon epithelium, carcinoma	Homo sapiens	DSMZ
Calu-3	Epithelium	Lung epithelium	Homo sapiens	ATCC
HaCaT	Epithelium	Keratinocytes	Homo sapiens	CLS
MDCK (NBL-2)	Epithelium	Kidney epithelium-like	Canis familiaris	ATCC
MDCK2	Epithelium	Kidney epithelium-like	Canis familiaris	ECACC
NRK-52E	Epithelium	Kidney epithelium-like	Rattus norvegicus	ATCC
RLE-6TN	Epithelium	Lung epithelium	Rattus norvegicus	ATCC
T84	Epithelium	Colon epithelium	Homo sapiens	ATCC

72h NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Particle concentrations :

1, 5 and 25 µg/cm²

- tro

- ⁷02

Cora

+ C[©]Q2

⁴ C^eO² ⊗

+ CeO2 F

1- 8100H II 4 \$250×

* NOOHI

[⊉] C[©]O² C

(CeO2 S

50

Results: FZK-ITG

nan

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

nan@are Ergebnisse: In vitro Screening

→ Insgesamt zeigte nur eine kleine Anzahl der getesteten Partikel signifikante Effekte in den elf untersuchten Zelllinien.

Die Ergebnisse lassen bedingt eine Korrelation von Partikeleigenschaften wie Kristallinität und Löslichkeit mit zellulären Effekten zu.

→ Die Daten werden mit den *in vitro* Ergebnissen der NanoCare Partner verglichen, um Dosis-Wirkungs-Beziehungen_{NanoCare} herzustellen.

nan@are
Entzundungs-
marker und
Kokultursysteme

→ Insgesamt zeigte nur eine kleine Anzahl der getesteten Partikel signifikante Effekte in den elf untersuchten Zelllinien.

Die Ergebnisse lassen bedingt eine Korrelation von Partikeleigenschaften wie Kristallinität und Löslichkeit mit zellulären Effekten zu.

→ Die Daten werden mit den *in vitro* Ergebnissen der NanoCare Partner verglichen, um Dosis-Wirkungs-Beziehungen_{NanoCar} herzustellen.

	ROS	MTT	LDH	Cas3	TEER
TiO ₂ 1	-	-	-	nd	nd
TiO ₂ 2	-	-	-	nd	nd
TiO ₂ 3	+/-	-	-	-	-
Carbon Black	+	-	-	-	-
CeO ₂ A	+/-	-	-	nd	nd
CeO ₂ B	+/-	-	-	nd	nd
CeO ₂ C	+/-	-	-	nd	nd
CeO ₂ D	+/-	-	-	nd	nd
CeO ₂	-	-	-	nd	nd
Böhmit I	-	-	-	nd	nd
Böhmit II	-	-	-	nd	nd
Ti-Zr Mixed Oxide 1	-	-	-	nd	nd
Ti-Zr Mixed Oxide 2	-	-	-	nd	nd
Ti-Zr Mixed Oxide 3	+/-	-	-	-	nd
AI-Ti-Zr Mixed Oxide 1	-	-	-	nd	nd
Al-Ti-Zr Mixed Oxide 2	-	-	-	nd	nd
AI-Ti-Zr Mixed Oxide 3	-	-	-	nd	nd
ZrO ₂ 1	-	-	-	-	-
ZrO ₂ 2	-	-	-	nd	nd
ZrO, 3	-	-	-	nd	nd
ZnO	-	+	+	-	+
BaSO ₄	-	+/-	+/-	nd	nd
SrCO ₃ I	-	-	-	nd	nd
SrCO ₃ II	-	-	-	nd	nd

GEEÖRDERT VOM

Nano material	A549 Mono- culture	MM6 Mono- culture	MM6 (pre- stimulated) mono- culture	A549 with MM6 in coculture	A549 with MM6 (prestimul ated) in coculture
BaSO ₄	?	-	-	?	?
nano-ZnO	+	+	+	+	+
CeO ₂ A	?	-	-	+	+
CeO ₂ B	-	-	-	-	?
CeO ₂ C	-	-	-	+	?
CeO ₂ D	-	-	-	-	-
CeO ₂	-	-	-	-	-
TiO ₂	-	\downarrow	Ļ	\downarrow	\downarrow
TiO ₂	+	-	-	+	+
TiO ₂	-	-	-	-	-
Carbon Black CB14	+	\downarrow	\downarrow	+	+
Ti-Zr Mixed Oxide 1	-	-	-	-	-
Ti-Zr Mixed Oxide 2	-	-	-	-	-
Ti-Zr Mixed Oxide 3	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 1	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 2	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 3	-	-	-	-	-

TNFa

(30 units)

Korund

(60 pg/cell)

nan@are Zusamme

Zusammenfassung: Methodik

- Charakterisierung der verwendeten Nanopartikel
- Test-<u>Eignung</u> f
 ür jeden Nanopartikeltypen (Interferenz)
- Zellbiologische Tests unterscheiden sich in ihrer Sensitivität f
 ür spezifische Partikel
- Verwendung von ausgewählten Standardzelllinien, bevorzugt sensitive, <u>diskriminante</u> Zelllinien
- Verwendung von primären Zellen
- Test kurzfristiger (z.B. oxidativer Stress), mittelfristiger (z.B. Zelltod) und langfristiger (z.B. Mutationen, Transformation) Effekte

- Wirkungsbeziehung)
- Untersuchung der Partikeleffekte an und in Zellen (Partikelaufnahme, Kinetik, beteiligte Signalwege).

