

BMBF Projekt NanoCare In vitro Zellsysteme: Zentrale Ergebnisse

Jürgen Schnekenburger

Medizinische Klinik B Westfälische Wilhelms-Universität Münster

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

In vitro Zellsysteme: Übersicht

- Standardisierung der Zellkulturmodelle
- Adsorption von Proteinen an Nanopartikel
- Karlsruher Zell-Expositionssystem
- AFM-Analyse von Nanopartikel-Zell Interaktionen
- Transport von Partikeln durch epitheliale Zellmonolayer
- Vergleichende Analyse von Test und Zellkultursystemen zum in vitro Toxizitätstest
- IBE Vector Modell primärer Alveolarmakrophagen
- Zusammenfassung und Ausblick

In vitro Zellsysteme: Zielsetzung

Ziel: Beurteilung zellulärer Reaktionen in Gegenwart von Nanopartikeln abhängig von Partikelkonzentration, -größe, chemischer Zusammensetzung und Partikeloberfläche

- Welche Zelltypen müssen untersucht werden, um Partikeleffekte zu charakterisieren?
- Welche Testsysteme werden für die Beurteilung der biologischen Auswirkungen benötigt?
- Welche Testsysteme sind für die Untersuchung von Nanopartikeln geeignet?

Entwicklung standardisierter Testsysteme (SOP) mit einer definierten Gruppe von Zelltypen und Assays

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Nanopartikel werden durch Dispersion in biologischen Medien verändert

Bundesministerium für Bildung und Forschung

Nanopartikel Protein Adsorption

Adsorption von Proteinen aus broncheoalveolärer Lavage-Flüssigkeit an Nanopartikel: Partikel zeigen unterschiedliche Adsorptionsmuster.

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

nan 🕞 🖂 Nanopartikel Interferenz mit Testsystemen: 🦚 **Optische Interferenz (Carbon Black)**

nan@are_ "Checkliste" für in-vitro Tests mit Nanopartikeln

Dispersionen:

- Dispersions Protokoll
- Agglomerat Größenverteilung und Agglomerationsstatus
- Zetapotential
- Benetzbarkeit und Agglomeration/Desagglomeration nach Adsorption von Lösungsbestandteilen
- Adsorption von Lösungsbestandteilen, die Passivierung, Löslichkeit und Bindung beeinflussen können.

Mikrobiologische Eigenschaften

- Sterilität
- Endotoxin Konzentration
- Einfluß auf Endotoxin Tests

- Reaktion mit oder Adsorption von Testreagenzien
- Absorbtion oder Streuung des emittierten Lichts
- Quenchen der emittierten Fluoreszenz

Schulze et al., "Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media" Nanotoxicology, 2008

Karlsruhe Exposition System

Bundesministerium für Bildung und Forschuna

Left: scheme of the Karlsruhe Exposure System with the (1) size selective inlet, (2) the water vapour dosage for humidification (3), the conditioning reactor for a constant aerosol with 37°C and 85% r.h., (4) the VITROCELL® exposure chambers containing the Transwell® membrane inserts and the sensor of the (5) guartz crystal microbalance. Right: photograph of the fully automated and temperature controlled prototype during an outside measurement of environmental aerosols.

Karlsruhe Exposition System

Opened and closed VITROCELL® exposure chambers with water temperature control and medium for supplying the cell cultures with nutrients.

Scheme of the exposure of a cell culture towards aerosol at the air liquid interface consisting of the aerosol inlet, the cell culture insert and the medium container.

Expositions Experimente mit TiO₂ an humanen Lungenepithelzellen (A549) zeigten keine signifikante Veränderung der Zellviabilität nach 2 und 4 h Exposition.

Ergebnisse: FZK-ITG and ITC

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

nan@are AFM Analyse von Nanopartikel-Zell Interaktionen

Topographic
AFM-images of a
whole RLE-6TNcell (left) and
magnified parts of
the cell surface
(right). Untreated
cells (upper
panel) and
incubated with
CeO2-NP (lower
panel). Cells are
fixed and imaged
in buffer solution.

nan@are AFM Analyse von Nanopartikel-Zell Interaktionen

Coated AFM tip mapped with an electron microscope (left) and an AFM image of the reconstructed apex (right).

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Distance from cell surface [µm]

Typical force distance curve for a coated AFM-tip on a living cell with a dwell-time of 30 s. The red curve shows the approach, the green one the tips movement during the contact (dwell-time) and the blue one describes the retraction.

Rupture events can occur several microns away from the surface. This indicates the formation of membrane tethers (thin nano-tubes that consist of lipids) with rupture forces around 50 pN that appear for all analyzed particles.

Transport von Metalloxid Nanopartikeln über Zellmonolayer

Das Transwell System: Epitheliale Zellen (blaue Quadrate) trennen den apikalen (Donor) vom basolateralen (Empfänger) Kompartiment. Sowohl interzellulärer und intrazellulärer Transport von Partikeln als auch Aufnahme und Adhäsion können untersucht werden.

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Transport von Metalloxid Nanopartikeln über Zellmonolayer

Permeation von Modellpartikeln durch Filter mit unterschiedlichen Porengrößen. Nach 5 Stunden Inkubation waren nahezu 100 % der Partikel durch Filter mit großen Poren diffundiert, wohingegen eine Porengröße von 0.4 µm eine signifikante Barriere darstellte (c=Carboxylated; p=Plain; die Zahl entspricht der Partikelgröße).

Transport von Metalloxid Nanopartikeln über Zellmonolayer

Nano- particle	Permeation through naked filter after [%]		Cellular uptake & filter washout [%]	
ZrO ₂	35 ± 4.5	0	2.7 ± 2.6	
TiO ₂ P25	34.8 ± 4.1	0	0	
Böhmit I	46.7 ± 19.1	0	0	

Zusammenfassung der Transport-Assays mit Metalloxid Nanopartikeln. Für keinen der getesteten Partikel konnte ein Transport durch die Zellbarriere nachgewiesen werden.

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Zelluläre Signalwege der Nanopartikel Wirkung

In vitro Toxizitätstests: NanoCare Zelllinien

	Туре	Origin	Species	Source
Mono-Mac-6	Connective tissue	Monocytes/Macrophages, leukemia	Homo sapiens	DSMZ
NIH-3T3	Connective tissue	Embryo fibroblasts	Mus musculus	DSMZ
RAW 264.7	Connective tissue	Macrophages	Mus musculus	ATCC
A-549	Epithelium	Lung epithelium, carcinoma	Homo sapiens	DMSZ
CACO-2	Epithelium	Colon epithelium, carcinoma	Homo sapiens	DSMZ
Calu-3	Epithelium	Lung epithelium	Homo sapiens	ATCC
НаСаТ	Epithelium	Keratinocytes	Homo sapiens	CLS
MDCK (NBL-2)	Epithelium	Kidney epithelium-like	Canis familiaris	ATCC
MDCK2	Epithelium	Kidney epithelium-like	Canis familiaris	ECACC
NRK-52E	Epithelium	Kidney epithelium-like	Rattus norvegicus	ATCC
RLE-6TN	Epithelium	Lung epithelium	Rattus norvegicus	ATCC
T84	Epithelium	Colon epithelium	Homo sapiens	ATCC

In vitro Toxikologie

Standard Zelllinie: A549 (humane Lungenepithelzellen)

Results: FZK-ITG Viabilität (LDH Assay)

In vitro Toxikologie

Bundesministerium für Bildung und Forschung

Standard Zelllinie: A549 (humane Lungenepithelzellen)

Entzündung (IL-8 ELISA)

Results: FZK-ITG

Particle concentrations:

0.5, 5 and 50 µg/cm² 72h

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

In vitro Toxikologie

Bundesministerium für Bildung und Forschung

Standard Zelllinie: A549 (humane Lungenepithelzellen)

Oxidativer Stress (Glutathion Bestimmung)

Results: FZK-ITG

Particle concentrations:

1, 5 and 25 µg/cm²

In vitro Toxizitäts-Screening: Überblick

Ergebnisse des in vitro Toxizitäts-**Screenings: Ti-Zr Mixed Oxide 3**

GEFÖRNERT VOM

Ergebnisse: In vitro Screening

- → Insgesamt zeigte nur eine kleine Anzahl der getesteten Partikel signifikante Effekte in den elf untersuchten Zelllinien.
- → Die Ergebnisse lassen bedingt eine Korrelation von Partikeleigenschaften wie Kristallinität und Löslichkeit mit zellulären Effekten zu.
- → Die Daten werden mit den *in vitro* Ergebnissen der NanoCare Partner verglichen, um Dosis-Wirkungs-Beziehungen_{NanoCare} herzustellen.

	ROS	MTT	LDH	Cas3	TEER
TiO ₂ 1	-	-	-	nd	nd
TiO ₂ 2	-	-	-	nd	nd
TiO ₂ 3	+/-	-	-	-	-
Carbon Black	+	-	-	-	-
CeO ₂ A	+/-	-	-	nd	nd
CeO ₂ B	+/-	-	-	nd	nd
CeO ₂ C	+/-	-	-	nd	nd
CeO ₂ D	+/-	-	-	nd	nd
CeO ₂	-	-	-	nd	nd
Böhmit I	-	-	-	nd	nd
Böhmit II	-	-	-	nd	nd
Ti-Zr Mixed Oxide 1	-	-	-	nd	nd
Ti-Zr Mixed Oxide 2	-	-	-	nd	nd
Ti-Zr Mixed Oxide 3	+/-	-	-	-	nd
Al-Ti-Zr Mixed Oxide 1	-	-	-	nd	nd
Al-Ti-Zr Mixed Oxide 2	-	-	-	nd	nd
Al-Ti-Zr Mixed Oxide 3	-	-	-	nd	nd
ZrO ₂ 1	-	-	-	-	-
ZrO ₂ 2	-	-	-	nd	nd
ZrO ₂ 3	-	-	-	nd	nd
ZnO	-	+	+	-	+
BaSO ₄	-	+/-	+/-	nd	nd
SrCO ₃ I	-	-	-	nd	nd
SrCO ₃ II	-	-	-	nd	nd

Entzündungsmarker und Kokultursysteme

- → Insgesamt zeigte nur eine kleine Anzahl der getesteten Partikel signifikante Effekte in den elf untersuchten Zelllinien.
- → Die Ergebnisse lassen bedingt eine Korrelation von Partikeleigenschaften wie Kristallinität und Löslichkeit mit zellulären Effekten zu.
- → Die Daten werden mit den *in vitro* Ergebnissen der NanoCare Partner verglichen, um Dosis-Wirkungs-Beziehungen_{NanoCare} herzustellen.

Nano material	A549 Mono- culture	MM6 Mono- culture	MM6 (pre- stimulated) mono- culture	A549 with MM6 in coculture	A549 with MM6 (prestimul ated) in coculture
BaSO ₄	?	-	-	?	?
nano-ZnO	+	+	+	+	+
CeO ₂ A	?	-	-	+	+
CeO ₂ B	-	-	-	-	?
CeO ₂ C	-	-	-	+	?
CeO ₂ D	-	-	-	-	-
CeO ₂	-	-	-	-	-
TiO ₂	-	\downarrow	\downarrow	↓	\downarrow
TiO ₂	+	-	-	+	+
TiO ₂	-	-	-	-	-
Carbon Black CB14	+	\	\downarrow	+	+
Ti-Zr Mixed Oxide 1	-	-	-	-	-
Ti-Zr Mixed Oxide 2	-	-	-	-	-
Ti-Zr Mixed Oxide 3	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 1	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 2	-	-	-	-	-
Ti-Al-Zr Mixed Oxide 3	-	-	-	-	-

Messung der *in vitro*-Toxizität von Nanomaterialien mit dem Vektorenmodell

Quarz- und Korund-Partikel dienen als biol. Bezugspunkte ("Benchmark Testing")

Weitere Differenzierung: **Enzymfreisetzung und funktionelle** Zellschädigung

Ranking der in vitro Toxizität

Summenindex: S_{vivo} (→ Maximalwert: 400)

Parameter	Beitrag	Nachweismethode
Funktionelle Zellschädigung	→ 100	PMA-induzierte ROS-Freisetzung
Freisetzung von Glucuronidase	→100	Enzyme assay im Zellkulturüberstand
Lactatedehydrogenase (LDH)	→ 100	Enzyme assay im Zellkulturüberstand
Bioactives TNF	→ 100	Bioassay mit Zellkulturüberstand Lyse von Fibroblasten

BaSO₄(10) < AlOOH(5.1) < CeO₂(3.1) \leq Ti-Zr(6.3) \leq TiO₂(1.2) \leq CeO₂(4.4) < Al-Ti-Zr(7.3)

→ Korrelation mit in vivo Effekten

Zusammenfassung: Methodik

- Charakterisierung der verwendeten Nanopartikel
- Test-<u>Eignung</u> für jeden Nanopartikeltypen (Interferenz)
- Zellbiologische Tests unterscheiden sich in ihrer Sensitivität für spezifische Partikel
- Verwendung von ausgewählten Standardzelllinien, bevorzugt sensitive, <u>diskriminante</u> Zelllinien
- Verwendung von primären Zellen
- Test kurzfristiger (z.B. oxidativer Stress),
 mittelfristiger (z.B. Zelltod) und langfristiger (z.B. Mutationen, Transformation) Effekte

Zusammenfassung: Toxikologie

- Definition von in vitro <u>NEL</u> und LOEL für die verwendeten Nanopartikel
- Nur wenige der getesteten Partikel zeigten Effekte in in vitro Tests mit standardisierten Zelllinien
- Vergleichsdaten zur Evaluierung der in vitro Tests anhand der in vivo Daten

NanoCare Abschlussveranstaltung 16.06.-17.06.2009, Berlin

Ausblick

- Weiterentwicklung der Testsysteme
- Untersuchung und Identifizierung der für toxikologische Effekte relevanten Partikeleigenschaften (Struktur-Wirkungsbeziehung)
- Untersuchung der Partikeleffekte an und in Zellen (Partikelaufnahme, Kinetik, beteiligte Signalwege).

Vielen Dank für Ihre Aufmerksamkeit!

samkeit!

S. Brill, J. Bruch, D. Hahn, A. Kroll, H.F. Krug, R. Landsiedel, C.-M. Lehr, L. Ma-Hock, S. Mülhopt, K. Nau, H-R. Paur, M.H. Pillukat, J. Pauluhn, J. Ragot, U.F. Schäfer, J. Schnekenburger, C. Schulze, K. Tönsing, D. Wesner, M. Wiemann, K. Wiench, W. Wohlleben, S. Zünkeler

Forschungszentrum Karlsruhe In der Helmheitz-Gemeinschaft ITC – TAB

