A German Initiative on the Health Aspects of Synthetic Nanoparticles: Establishing an Information- and Knowledge-Base for Innovative Material Research <u>http://www.nanopartikel.info/</u>

nan@are

Short-Term Inhalation Study in Rats for Testing of Nanomaterials

Date 24rd Apirl 2008

<u>Version</u> 1.0

CONTENTS

1.	Study design	2
2.	Animals	3
3.	Generation of the test atmospheres	3
3.1.	Generating the test atmosphere by brush dust generator	3
3.2.	Generating the test atmosphere by atomizing suspension	4
4.	Characterization of the test atmospheres	5
4.1.	Determination of atmospheric concentration of the test item	5
4.2.	Determination of the mass median aerodynamic diameter	5
4.3.	Determination of particle size distribution	5
5.	Examinations	6

1. STUDY DESIGN

Route of administration:	Inhalation
Exposure mixture:	Dust aerosol
Type of exposure:	Head-nose exposure
No. of test concentrations:	3 and concurrent air control
Frequency of exposure:	On 5 consecutive days
Duration of one exposure:	6 hours
Number of exposures:	5

The parameter to be examined and the exact time points of the examinations are presented in Figure 1. The details of the examined parameters are described in the following sections.

St	udy	⁄ da	y -		-				
1	2	3	4	5	6	7	8	9 - 27	28
Х	Х	Х	Х	Х	R	R	R	R	R
				Е			L		E+L

- x: head/nose exposure
- R: recovery period
- E: lung burden, gross necropsy, organ weights, preservation of organs and tissues for histopathology
- L: broncho alveolar lavage (BAL)

nano are

2. ANIMALS	
Animal species:	Rat
Gender:	Male
Age at supply: start of preflow: start of exposure:	About 7 weeks 8 weeks 9 weeks
Test groups:	Lavage: 5 animals per concentration and time point Pathology and histopathology: 3 animals per concentration and time point
	Lung burden: 3 animals per concentration and time point

3. GENERATION OF THE TEST ATMOSPHERES

3.1. Generating the test atmosphere by brush dust generator

Dust aerosols were produced at target concentrations by dry dispersion of powder pellets with a brush dust generator (developed by the Technical University of Karlsruhe in cooperation with BASF, Germany). Each concentration was generated with compressed air in a mixing stage, mixed with conditioned dilution air and passed via a cyclone (to separate particles > 3 μ m) into a head-nose inhalation system (Fig. 2). To reduce electrostatic charging, brushes made of stainless steel were used. The generator itself and all conducting tubes were grounded.

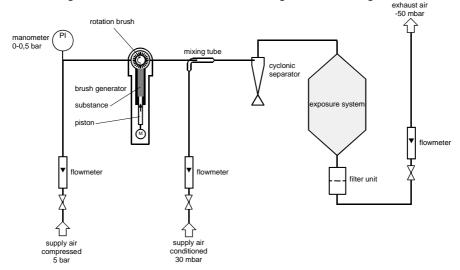
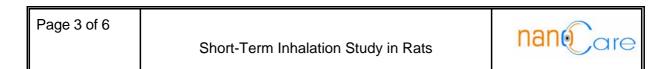



Figure 2: Flow diagram of dust generation and exposure system using brush dust generator

3.2. Generating the test atmosphere by atomizing suspension

For each concentration the test substance suspension was supplied to a twocomponent atomizer at a constant rate by means of a metering pump. The aerosol was generated with compressed air in a mixing stage, mixed with conditioned dilution air and passed via the cyclonic separator into the inhalation system (Figure 3).

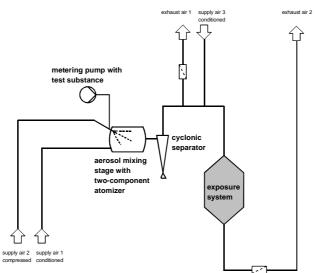


Figure 3: Flow diagram of dust generation and exposure system using twocomponent atomizer.

nan() are

4. CHARACTERIZATION OF THE TEST ATMOSPHERES

4.1. Determination of atmospheric concentration of the test item

Method:	Gravimetrical measurement
Sampling site:	In adjacent to the animals snouts
Sampling velocity:	1.25 m/s, at 3 L/min
Sampling probe:	7 mm
Sampling device:	Gas sampling station with glass fibre filter (d = 4.7 cm)
Sampling volume:	Depending on atmospheric concentration. The total sample amount on the filter should be between 1 and 5 mg.

4.2. Determination of the mass median aerodynamic diameter

Device:	Eight-stage Marple Personal Cascade Impactor (Sierra- Andersen)
Method:	gravimetrical measurement with appropriate balance
Sampling site:	In adjacent to the animals snouts
Sampling velocity:	1.25 m/s, at 3 L/min
Sampling probe:	7 mm
The effective aerodynamic cutoff diameters (EACD):	21, 15, 10, 6.5, 3.5, 1, 0.7, or 0.4 µm and the backup filter
Sampling volume:	Depending on atmospheric concentration. The total sample amount on collectors should be between 0.8 and 1.2 mg.

4.3. Determination of particle size distribution

In addition to the cascade impactor measurement, the atmospheres are further characterized by scanning mobility particle sizer (SMPS) and an optical particle counter.

nan() are

5. EXAMINATIONS

In-life:	Clinical observation (3 times/day during exposure, once
	daily during the non-exposure days) body weight (weekly)
Sacrificing:	Exsanguination under Narcoren® anaesthesia and opening
	of the abdominal vessels
BAL:	2 flushes with 6 mL (0.9 % NaCl) each, combined BAL fluid
	will be examined
BALF parameters	Recovered BALF volume
	Total cell count
	Cell differential analysis of cytospin preparations
	Protein
	Lactate dehydrogenase
	Alkaline phosphatase
	N-acetyl-ß-D-glucosaminidase
	γ-Glutamyltransferase
	MCP-1
	IL-8
	M-CSF
	Osteopontin
	Clusterin
Parameters in lavaged	IL-1 α
lung tissue:	TNF-α
Hematology	Leukocytes
	Troponin
	Erythrocytes
	Hemoglobin
	Hematocrit
	Mean corpuscular volume (MCV)
	Mean corpuscular hemoglobin (MCH)
	Mean corpuscular hemoglobin concentration (MCHC)
	Platelets
	Differential blood cell count
Akute Phase Proteins	Haptoglobin
	CRP
Pathology and	Gross necropsy
	Organ weight (lung, mediastinal lymph nodes, liver, kidney,
	spleen, thymus and brain)
Histopathology:	Nasal cavity (Level 1- IV)
	Larynx (Level I-III)
	Trachea with bifurcation, longitudinal section
	Lungs (five lobes)
	Mediastinal lymph node

