C D aft C D

Nanoparticle Tracking: Improving **Analysis for Size Distributions of Polydisperse Particle Suspensions**

Thorsten Wagner¹, Martin Wiemann², Inge Schmitz³, Hans-Gerd Lipinski¹

¹ Fachhochschule Dortmund, Biomedical Imaging Group, Emil- Figge Strasse 42, D-44227 Dortmund ² IBE R&D Institute for Lung Health, D-48149 Münster ³ Institute for Pathology, Ruhr-University D-44789 Bochum

Introduction

- The Nanoparticle Tracking Analysis allows to describe the particle size distribution (PSD) of nanoparticle suspensions.
- The variance (or the broadening) of the size distribution depends on number and duration of the observed particle tracks and, in particular, on the mean particle size.
- This broadening effect leads to hardly assessable modal values and

Limitation of Conventional PSDs 2

- Limitation: The modal values do not represent the real proportions of particle populations (e.g. 100nm & 200nm population).
- The reason for this misinterpretation is what we call the "broadening effect", which is caused by the constant coefficient of variation of the PSDs.
- Limitation: It is possible that one population covers another population
- (e.g. 150nm & 200nm population).

difficult separation of populations of particles.

- We developed a method to reduce the broadening effect and improving the separation of populations.

Method of Nanoparticle Tracking Analysis

- Based on laser technology it is possible to visualize nanoparticles (NP) as light scattering objects by means of a light microscope.
- The snapshots of scattered intensity are in a permanent movement, since particles are subject to Brownian Motion
- Motion-Tracking was used to calculate the mean square displacement for each and every particle and the diffusion coefficient.
- By exploiting the Stokes-Einsteing-Relation we can calculate the hydrodynamic NP-diameter.

Limitations of Concentional PSDs 1

- A Monte-Carlo simulation of a polydisperse suspension containing 50 nm,

100 nm, 150 nm and 200 nm particles was performed.

Diameter	50nm	100nm	150nm	200nm	Sum
Number	1.2×10^4	2.2×10^4	4×10^{3}	4×10^4	8 x 10 ⁴

Logarithmised Data and Cluster Analysis

- The logarithm stabilizes the variance of an statistical variable if it has a constant coefficient of variation (left figure)
- The diameter data were logarithmised to gain more comparability between the particle populations.
- A cluster analysis was done with the constraint "same variance" using the logarithmised data (right figure & table)

ondotor moun	14.9%		27.1%		9.3%			TOO	211
Proportion								47.4%	1.1%
Table: Results suspension.	s of th	he cl	luster	analy	/sis	of	the	virtual	polydisperse

Conclusion

100%

The procedure appears helpful to correctly interpreting the composition of polydisperse particle suspension.

Acknowledgment

The work was funded by the German Ministry of Education and Research. (BMBF / NanoGEM Projek, FKZ 03x0105G and 03X0105H)