Eigenschaften und Anwendungen

Baryt © M.Dorr & M.Frommherz / Fotolia.comBaryt © M.Dorr & M.Frommherz / Fotolia.comBariumsulfat (BaSO4) ist das Barium-Salz der Schwefelsäure. Der Name Barium leitet sich vom griechischen barys (schwer) ab, was von dem hohen Atomgewicht von Barium (M=137) herrührt.

Die wichtigsten Kennzeichen von Bariumsulfat, die auch seine technische Bedeutung bestimmen, sind die hohe Dichte, die chemische Inertheit, das Reflexionsvermögen von elektromagnetischer Strahlung und der perlmutartige Glanz sowie eine geringe Löslichkeit in Flüssigkeiten und eine geringe Ölaufnahme. Die Dichte von natürlichem Bariumsulfat beträgt 4,3-4,6 g/cm³. In Wasser, Säuren und Laugen ist Bariumsulfat praktisch unlöslich (Ausnahme: heiße konzentrierte Schwefelsäure). Bariumsulfat ist infolge seiner äußerst geringen Wasserlöslichkeit im Gegensatz zu anderen Barium-Verbindungen ungiftig

 

Die Hauptmenge des natürlichen Bariumsulfats wird bei der Erdölförderung und Erdgasförderung zur Erzielung eines Bohrschlammes hoher Dichte eingesetzt (Bohrspat), der die Bohrlöcher durch Flotation von Gesteinsbrocken frei hält.

Natürliches Bariumsulfat kann aufgrund seiner hohen Reinheit aber ohne größere Aufbereitung auch zur Herstellung hochwertiger Produkte dienen. Als Füllstoff findet es sowohl in der Kunststoffindustrie als auch in der Lack- und Farbenindustrie Verwendung (Füllstoffspat). In Kunststoffen verbessert Bariumsulfat die Verarbeitbarkeit und erhöht das Gewicht, was die schalldämmende Wirkung von Kraftfahrzeugfußmatten, Teppichbeschichtungen oder Kunststoffabwasserrohren erhöht. Die chemische Inertheit und hohe Temperaturstabilität wird in Kupplungsbelägen oder Bremsbelägen ausgenutzt, in denen bis zu 40% Bariumsulfat enthalten sind. In der Lack- und Farbenindustrie dient BaSO4 neben der Volumengebung vor allem zur Verbesserung der Verarbeitungseigenschaften. Wichtige Anwendungsgebiete sind Spachtelmassen, Füller und Grundierungen. In der Textilindustrie dient Bariumsulfat als Weißwarenappretur, zum Mattieren von Reyon im Druck und im Weißätzen. Aufgrund seines hohen Absorptionskoeffizienten für Gamma- und Röntgenstrahlung eignet es sich in Verbindung mit Beton (Barytbeton, Barytzement) auch als Abschirmmaterial für Atomenergieanlagen. Auch in zahlreichen Röntgenkontrastmitteln ist Bariumsulfat (Röntgenbaryt) enthalten.

Etwa 70 % des synthetischen Bariumsulfats Blanc fixe (Permanentweiß) werden für Anstrichstoffe verwendet. Neben der verglichen mit Baryt größeren Helligkeit ist hier vor allem die gezielt einstellbare Teilchengröße von Vorteil. Wichtige Anwendungen sind Grundierungen und Füller bei Automobillackierung, Industrielacken, Bauten-, Holz- sowie Druckfarben. In Decklacken wird es als "Spacer" zur Verbesserung der Streueigenschaften von Titandioxid-Pigmenten eingesetzt oder zur Verhinderung der Flockulation organischer oder anorganischer Buntpigmente eingesetzt. Die Verwendung zusammen mit Zinksulfid als Weißpigment (Lithopone) hat es stark an Bedeutung verloren. Durch den Zusatz von Blanc fixe werden Kunstdruckpapiere und Photopapiere (Barytpapiere) außerordentlich gut glättbar. In Kunststoffen wird Blanc fixe zur Verbesserung der Verarbeitbarkeit und als "Spacer" (siehe oben) für Weißpigmente und Buntpigmente verwendet. Weitere Anwendungen sind die Erhöhung der Oberflächenhärte und Kratzfestigkeit bei Polyolefinen, die Produktion weißer Filme ohne Farbstich oder transluzierender Kunststoffe und die Verbesserung der Verarbeitbarkeit bei vielen teilkristallinen Thermoplasten. Seine Fähigkeit, Röntgenstrahlung zu absorbieren, wird für medizinische Geräte wie Katheder oder Drainageröhrchen und bei Spielzeug, das von Kindern verschluckt werden kann, ausgenutzt.

Im Synthesefaser-Bereich werden spezifisch strukturierte Faseroberflächen mit einem verbesserten Reibverhalten erhalten. Bei der Papierherstellung geht die Bedeutung von Blanc fixe als Füllstoff infolge einer verbesserten Feinstmahltechnik und der höheren Reinheit von natürlichem Bariumsulfat heute beständig zurück.

Optische Instrumente und Komponente wie Ulbrichtkugeln, Reflektorpanele oder Pumpkammern, für die ein hoher Reflexionsgrad wichtig ist, werden üblicherweise mit Bariumsulfat (BaSO4) beschichtet.

Baryt (Schwerspat) ist heute das einzige technisch genutzte Ausgangsmaterial für die Herstellung von Barium-Metall und alle Barium-Verbindungen [3].

 

Bariumsulfat ist als nanometergroßes Pulver nicht selbstentzündlich. Auch als fein verteilte Mischung mit Luft (Staub) unter Einwirkung einer Zündquelle ist Bariumsulfat nicht entzündlich, also besteht keine Möglichkeit einer Staubexplosion.

 

Vorkommen und Herstellung

Sandrose © Bjorn Wylezich / fotolia.comSandrose © Bjorn Wylezich / fotolia.comIn der Natur kommt Bariumsulfat in Form von Kristallen vor, die man ihrer hohen Dichte wegen als Schwerspat (Baryt) bezeichnet. Die säuligen, dünntafeligen oder körnigen Kristalle sind von weißer oder gelblicher Farbe und relativ leicht spaltbar. Durch Verwachsungen der Kristalle kommt es zur Bildung sogenannter Baryt-Rosen. Eine seltene Erscheinungsform im Sand wird Wüstenrose genannt. Die wichtigsten Schwerspat-Lager in Deutschland sind bei Meggen in Westfalen [1]. Wesentlich größere Vorkommen gibt es in China, wo auch die weltweit größten Mengen an Bariumsulfat abgebaut werden. Natürliche Bariumsulfat wird zur Weiterverarbeitung aufgemahlen, wobei im Allgemeinen eine breite Partikelgrößenverteilung entsteht, die bis in den Bereich von 100 nm hinabreichen kann. Die breite Verteilung sichert eine hohe Schüttdichte. Für Anwendungen, bei denen es auf eine sehr reine weiße Farbe oder eine definierte Teilchengrößenverteilung ankommt, wird Bariumsulfat als sogenanntes Blanc fixe (Permanentweiß) durch Fällung hergestellt.

 

NanoCare - Datenblatt

 

Literatur arrow down

  1. Roempp-online.de (DE): Bariumsulfat (Stand letzter Zugang: Okt 2010).
  2. Wikipedia (DE): Bariumsulfat (Stand letzter Zugang: Okt 2010).
  3. Chemie.de: Barium (Stand letzter Zugang: Okt 2010).
  4. Kittel, H (1998). Lehrbuch der Lacke und Beschichtungen. 2. Auflage, Hirzel-Verlag, ISBN 3777608858.
  5. Gaechter, R & Mueller, H (1990). Taschenbuch der Kunststoffadditive. 3. Ausgabe, Hanser Fachbuchverlag, ISBN 3446156275.