AP4

Oberflächenmodifikationen von Silika Nanopartikeln führen zu einer verringerten Inflammasomaktivierung und verringerter Expression ausgewählter inflammatorischer Gene

Marzaioli V.¹, Thomas C.J.², Wiemann M.³, Landsiedel R.⁴, Wohlleben W.⁴, Weichenmeier I.¹, Behrendt H.¹, Schmidt-Weber C.¹,

Groß O.², Gutermuth J.¹, Alessandrini F.¹,

¹ ZAUM Zentrum Allergie und Umwelt, 80802 München

² Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München

³ IBE R&D gGmbH, Münster

⁴ BASF SE, 67056 Ludwigshafen

Konzept der Arbeit: Nanomaterialien fördern die allergische Entzündung in der Lunge

Abbildung 1: (**A**) Schematische Darstellung des OVA Sensibilisierungsprotokolls (1 µg OVA+Alum, intraperitoneal), NP Instillation (50 µg/Maus, intratracheal) und Allergenprovokation (1% OVA, inhalativ für 20 min). Readout: Plasma, BAL, Realtime PCR und Westernblot. (**B**) Gruppendarstellung (8-10 Mäuse/Gruppe). **NS**, nicht sensibilisierte Mäuse, injiziert mit PBS+Alum; **S**, sensibilisiert mit OVA. Die Aufteilung der Gruppen erfolgte nach Partikel oder -überstand (CTL) -Instillation

Status: Die Instillation mit 50 µg SiO2 und SiO2-PEG führte zu einer starken allergischen Entzündung der Lunge: Eine erhöhte Anzahl neutrophiler Granulozyten wurde in der BAL und im Lungengewebe in sensibilisierten mehr als in nicht sensibilisierten Mäusen nachgewiesen. Dagegen erzielten die Amino- und Phosphat-gecoateten Partikel eine verminderte Wirkung. Um die zugrunde liegenden Mechanismen zu evaluieren, untersuchten wir ob Oberflächemodifikationen mittels Aminound Phosphatgruppen, die Inflammasomaktivierung und selektive Genexpression beeinflussen. Die Untersuchungen zeigten, dass SiO₂ NP dosisabhängig die Sekretion der aktiven Form von IL-1^β in BMDC induzierten, wobei die Effekte von SiO₂ gegenüber SiO₂-PEG stärker waren. Außerdem führte das Adjuvans SiO₂-PEG zu einem verstärkten TH₂ inflammatorischen Milieu bei sensibilisierten Mäusen, erhöhte Expression von Muzin, von pro-inflammatorischen Chemokinen und Marker für Makrophagen und Eosinophilenaktivierung. Im Gegensatz dazu, nicht adjuvante SiO₂ NP mit -P und -NH₂ Oberflächemodifikationen verringerten sowohl die Inflammasomaktivierung als auch die Expression proinflammatorischer Gene. Dies führt zu einem besseren Verständnis der Mechanismen, reduzierter schädlicher Wirkungen von oberflächenmodifizierten SiO₂ Nanopartikeln.

Neutrophileninfiltrat in der Lunge

Abbildung 2: Schematische Darstellung der Gesamtzahl der Neutrophilen in nicht sensibilisierten Mäusen, instilliert mit 50 µg/Maus SiO₂ (**rot**), SiO₂ -PEG (**grün**), SiO₂ -P (**gelb**) SiO₂ -NH₂ (**blau**). n=8-10/Gruppe; *p<0.05 **p<0.01 ***p<0.01 ***p<0.001 vs entsprechende Kontrolle

Inflammasomaktivierung

Abbildung 3: Inflammasomaktivierung in LPS-primed Maus BMDC (**A**) Westernblot für IL-1 β , aktive Form (p17) im Überstand (SN), pro-aktive (pro-IL-1 β) und aktive Form (p17) im Zellextrakt (XT) (**B**) ELISA für IL-1 β vom Wildtyp (WT) oder NLRP3 -/- Maus BMDC behandelt mit steigenden Konzentrationen (0-1000µg/ml) von SiO₂ (rot), SiO₂ -PEG (grün), SiO₂ -P (gelb) SiO₂ -NH₂ (blau). Als Kontrolle wurden Alum oder Monosodium Urate Kristalle (MSU) eingesetzt (Insert).

Genexpressionsanalyse

Abbildung 4: Genexpressionsanalyse mittels Arrays. (**A**) Streudiagramm von PCR arrays vergleichen die in Lungen induzierten Gene von SiO₂-PEG S-Mäuse (obere Grafik) oder SiO₂-NH₂ S-Mäuse (untere Grafik) vs entsprechende Kontrolle (CTL). Grüne, rote und schwarze Punkte zeigen Gene, die im Vergleich zur Kontrolle hoch- bzw. runterreguliert oder unreguliert sind. (**B**) Repräsentative Regulation von Th2/Th1 Zytokinen und Chemokinen (mittleres Feld), und Marker für die alternative (AAΦ) bzw. für die klassische Aktivierung von Makrophagen (CAΦ) in nicht-sensibilisierten (NS) oder in sensibilisierten (S) Mäusen, instilliert mit SiO₂-PEG (grüne Balken) oder SiO₂-NH₂ (blaue Balken) vs entsprechende Kontrolle (CTL).

Finanziert vom BMBF (Förderkennzeichen 03X0105)