

## nanoGEM Nanomaterialien – Gesundheit, Exposition und Materialeigenschaften

Thomas A.J. Kuhlbusch





#### nanoGEM - Forschungsziele

## NanoGEM: Integrative Forschung zur Risikoabschätzung

- Gibt es eine Exposition gegenüber nanostrukturierten Materialien? Wie hoch ist das Gefährdungspotential? Besteht ein Risiko?
  - Interdisziplinäre und interessensübergreifende Forschung von Behörden, Forschungseinrichtungen und Industrie

Forschungsziele z.B.:

- Freisetzung, Veränderungen und Transformation von Nanoobjekten (NM)
- Biokinetische Untersuchungen mit Hilfe markierter Nanopartikel
- > Medienübergreifende Messtechnik: Luft, Wasser, Zellen und Gewebe
- > Modifizierung, Validierung und Etablierung von Toxizitätstests
- > Welchen Einfluss hat die Oberfläche / Coating auf Wirkmechanismen?
- > Risikoabschätzung, u.a. Arbeiter und Verbraucher



#### nanoGEM - 2010-2013



## AP 1 - Highlights Herstellung und Charakterisierung





**UV-** Lumineszenz



DaNa, Januar 2013

- 8 verschiedene Nanomaterialien, mit Variationen des Coatings, Dopings und lumineszenter Markierungen, hergestellt, charakterisiert, steril verteilt und getestet.
- Charakterisierungsprotokolle erstellt.
- Grundcharakterisierungen: Partikelgrößenverteilung in Flüssigkeiten, Zetapotential,
  - Primärpartikelgrößenverteilung, chemischen
  - Zusammensetzung, Oberflächenchemie,
  - Oberflächenkonzentration, Oberflächenreaktivitäten,
  - Kristallinität, Agglomeratstabilität, organische
  - Kontaminationen, ggfls. Lumineszenz.
  - Charakterisierungsdatenblätter erstellt.







ItN Nanovation

#### AP 1 - Highlights Herstellung und Charakterisierung

- Vergleichende
  Charakterisierung der
  Materialeigenschaften auf 119
  Seiten zur Korrelation der
  beobachteten Expositions- und
  Gesundheits-Effekte
- Datenblätter und Methoden sind kompatibel mit dem nanospezifischen Appendix R7.1 der REACH Richtlinien (ECHA 2012).





The *surface chemistry* molecular origin is highlighted by SIMS measurements of fragment ions from the top 1 to 3 nm of the nanomaterial's surface after washing with deionized water to remove any non-bound organic components, pelletting by hard sedimentation, drying (40,000 rpm for 2h, nanoGEM SOP SIMS).





Bayer Technology Services

#### AP 2 - Arbeitsplatzmessungen



- Tiered Approach weiter entwickelt zur Erfassung der Exposition gegenüber NP am Arbeitsplatz; SOPs verfasst (s. Poster)
- Hierbei: Messung an unterschiedlichen Orten sowie Herbeiführung einer "künstlichen" Leckage zur Validierung der Strategie

כaua:

iuto

- Alle typischen Arbeitsschritte ergaben keine erhöhte Konzentration, aber Leckage wurde detektiert, vgl. Monitoring (s. Abb.)
- Erkenntnisse aus den Messungen fließen in
- Aktualisierung der SOPs basierend auf den neuen Erkenntnissen



BAYER

**Bayer Technology Services** 



🗆 = BAS

#### AP 2 - NP-Freisetzung durch Bewitterung



T. Kuhlbusch



#### AP 2 - NP Freisetzung durch mech. Beanspruchung

- Möglichst Vermeidung von Hintergrundkontamination
- Verwendung gleicher Materialien und Schleifparameter
- Messungen derzeit im Gange
- Eingang in nationale und internationale Normierung













#### AP 2 - Staubungsneigung von Pulvern

- Untersuchung mit Schwingbett-Aerosolgenerator
- Die Partikelanzahlkonzentrationen zeigen in Abhängigkeit vom Material bei Frequenzen von 20 bis 60 Hz ein Maximum. In höheren Frequenzbereichen sinkt die Partikelanzahlkonzentration wieder ab. Bei 20 und 60 Hz entstehen ähnlich Größenverteilungen



#### Größenverteilungen mit 350 mg ZnO

#### AP Q - Agglomerationsverhalten nach Dispersion



DaNa, Januar 2013





nand

#### nanc AP Q - Adsorption von Biomolekülen: Lipide (CuroSurfTM)

#### Referenzmaterialien in $D_2O + Curosurf^{TM}$ : Surface coverage after pelletting/washing



Phospholipid affinity: SIMS peak ratio





C<sub>18</sub>H<sub>31</sub>O<sub>2</sub>mc17 tc1 758+5

#### AP Q - Adsorption von Biomolekülen: Proteine (1D Gel)





nano

G

#### Gesamtprotein





DaNa, Januar 2013

#### Nanc AP 3 - Aufnahme/Verteilung von NP in Zellen und Geweben

AP 3.2: Qualitative u. quantitative Lokalisation von NP in vivo Lunge (und asservierte Organe)

Intratracheale Instillation



- <u>3 Tage</u>
- Kryoschnitte



- PFA-Fixierung
- Immunhisto. (CD68)

SiO<sub>2</sub>-NP (FITC-markiert) agglomerieren in der Lunge und werden in Alveolarmakrophagen (CD68+) angereichert





# Gleiche Befunde u.a. für adsorptiv markiertes ZrO<sub>2</sub>-NP (rot)



Keine Anreicherung von SiO<sub>2</sub>-FITC) in:

Dendritischen Zellen (Ox62+) Typ-2-Epithelzellen (ALP+, Sudan Bl.+)

time after instillation

nano AP 3 - Aufnahme/Verteilung von NP in Zellen und Geweben

AP 3.2: Qualitative u. quantitative Lokalisation von NP in vivo Lunge (und asservierte Organe)

Intratracheale **ToF-SIMS** Analyse Ag50-NP behandelter Lungen: Instillation Anreicherung von Ag50 in Alveolarmakrophagen bestätigt Ag50-NP 3h • 3 Tage Poster Kryoschnitte PFA-Fixierung Tage • dH20 Mikroskopie ROI festlegen  $\mathbf{c}$  trocknen ROI übertragen 00 µm ToF-SIMS **ToF-SIMS Bild** Lichtmikroskopie DaNa, Januar 2013 Ag – organische - Si



#### in vitro Toxizitäts-Tests: WST8-Assay metabolische Aktivität proliferierender Zellen

- RAW264.7 Makrophagen werden deutlich inhibiert durch SiO<sub>2</sub>\_naked und SiO<sub>2</sub>\_FITC
- Oberflächen-Modifizierung mit PEG blockiert toxische Wirkung bei **SiO<sub>2</sub>\_PEG**
- SiO<sub>2</sub>\_Amino und SiO<sub>2</sub>\_Phosphat ebenfalls ohne Wirkung auf RAW264.7



#### AP 4 - Nanopartikel Toxikologie in vitro

#### in vitro Toxizitäts-Tests: WST8-Assay Inhibition Zell-Viabilität

Übersicht: deutlicher toxischer Effekt auf proliferierende Zellen durch mehrere NanoGEM Materialien

|                    | Zell-Viabilität für NanoGEM NM im WST8-Assay                                        |                      |        |       |                      |           |  |
|--------------------|-------------------------------------------------------------------------------------|----------------------|--------|-------|----------------------|-----------|--|
|                    | Inhibition wurde festgestellt bei einer Dosierung von [ $\mu$ g/cm <sup>2</sup> ] : |                      |        |       |                      |           |  |
|                    | RIF                                                                                 | RAW                  | HaCat  | NRK   | NIH                  | A549      |  |
|                    |                                                                                     |                      | naeat  |       |                      | Kontrolle |  |
| SiO <sub>2</sub> - | koino                                                                               | 10µg/cm <sup>2</sup> | keine  | keine | 10µg/cm <sup>2</sup> | keine     |  |
| naked              | Keine                                                                               |                      |        |       | (gering)             | Keine     |  |
| SiO <sub>2</sub> - | keine                                                                               | keine                | keine  | keine | keine                | keine     |  |
| PEG                | Konto                                                                               |                      |        |       | Konito               |           |  |
| SiO <sub>2</sub> - | n.d.                                                                                | keine                | keine  | keine | n.d.                 | keine     |  |
| Amino              |                                                                                     |                      |        |       |                      |           |  |
| SiO <sub>2</sub> - |                                                                                     | keine                | keine  | keine | n.d.                 | keine     |  |
| Phosphat           | n.d.                                                                                |                      |        |       | _                    |           |  |
|                    | keine                                                                               | keine                | keine. | keine | keine                | n.d.      |  |
| TODacid            |                                                                                     |                      |        |       |                      |           |  |
|                    | 10µg/cm <sup>2</sup>                                                                | keine                | keine  | keine | keine                | n.d.      |  |
| Acryibas           |                                                                                     |                      |        |       |                      |           |  |
|                    | 10µg/cm <sup>2</sup>                                                                | keine                | keine. | keine | keine                | n.d.      |  |
| AF13<br>7r0        |                                                                                     |                      |        |       |                      |           |  |
| PGA600             | keine                                                                               | keine                | keine  | keine | keine                | n.d.      |  |
|                    |                                                                                     |                      |        |       |                      |           |  |
| Ag50               | 1 µg/cm <sup>2</sup>                                                                | keine                | n.d.   | n.d.  | 1 µg/cm <sup>2</sup> | keine     |  |
| Ag50-              |                                                                                     |                      |        |       |                      |           |  |
| Citrat             | 10µg/cm²                                                                            | keine                | n.d.   | n.d.  | 10µg/cm²             | keine     |  |
| Ag50-              | 10                                                                                  | keine n.             |        |       | n.d.                 | n.d.      |  |
| mono               | 10µg/cm²                                                                            |                      | n.d.   | n.d.  |                      |           |  |
| Ag200-             | keine                                                                               | koino                | nd     | nd    | nd                   | nd        |  |
| mono               | $(50 \mu g/cm^2)$                                                                   | Keine                | n.a.   | n.a.  | n.a.                 | n.a.      |  |





#### AP 5 - Nanopartikel Toxikologie: Wirkmechanismen

#### Identifizierung Nanopartikel induzierter Zellschädigung durch Proteinoxidation





SiO<sub>2</sub> PEG





Quantifizierung der Proteinoxidation nach SiO<sub>2</sub> NM Exposition von NRK-52E Zellen.

 Nacktes SiO<sub>2</sub> führt bei geringen Konzentrationen zur Proteinoxidation, SiO<sub>2</sub> Phosphate bei höheren Konzentration, SiO<sub>2</sub> PEG zeigt keinen signifikanten Effekt.

**A)** Dose dependent analysis of protein carbonyl formation in NRK-52E cells treated with different amounts of SiO2

unmodified and SiO2 PEG. Doses are given in  $\mu$ g/ml. Carbonyls are coupled to Dinitrophenyl- hydrazine. The DNP conjugate can be detected

with DNP specific antibodies in western blots. Normalization was done with tubulin.

Experiments were done for all nanoGEM nanomaterials in triplicates. **B)** Quantification of one representative experiment for SiO2 unmodified (positive), SiO2 PEG (negative) and SiO2 Phosphate (positive).





#### AP 5 - Nanopartikel Toxikologie: Wirkmechanismen

## Vergleichende Untersuchungen zur in vitro Genotoxizität

#### Mikrokerntest an V79-Zellen (Chinese Hamster) zur Erfassung von chromosomalen Aberrationen oder Fehlverteilungen.

#### Mikrokerntest in vitro (OECD Guideline 487)

Im Mikrokerntest in Vitro wurden an V79 Zellen (Lungenfibroblasten des Chinesischen Hamsters) verschiedene NM auf ihr mögliches mutagenes Potenzial überprüft chromosomale Aberrationen oder Fehlverteilungen hervorzurufen die als Mikrokerne neben einem Hauptkern sichtbar werden.

# Chinese hamster V79 cells

Quadriperm dish





Beispiel mikroskopische Betrachtung bei Kulturende Ag 200.mono 55 µg/ml

| Prüfmuster      | Zytotoxisch          | Ergebnis              |  |
|-----------------|----------------------|-----------------------|--|
| Böhmit I (fein) | schwach ab 50 μg/ml  | nicht mutagen         |  |
| Ag 200.mono     | ab 55 µg/ml          | mutagen ab 27,5 μg/ml |  |
| Ag 50.mono      | ab 11 µg/ml          | mutagen ab 11 µg/ml   |  |
| SiO2 naked      | ab 500 µg/ml         | nicht mutagen         |  |
| SiO2 Phosphat   | schwach ab 100 μg/ml | nicht mutagen         |  |
| SiO2 PEG 500    | keine                | nicht mutagen         |  |

DaNa, Januar 2013

T. Kuhlbusch





## Ziele

Erörterung der im Rahmen von NanoGEM erzielten Messdaten im Lichte der wissenschaftlichen Literatur

Berücksichtigung neuester externer Erkenntnisse zur Risikoabschätzung

Speziell: Risikoabschätzung im Hinblick auf

- Chemikaliensicherheit
- Arbeitsschutz und
- Verbraucherschutz

Baver Material Science

BAS

#### AP 6 - Abschätzung potentieller gesundheitlicher Risiken

- Chemikaliensicherheit von NM: Fallbeispiele TiO<sub>2</sub>, SiO<sub>2</sub> und ZrO<sub>2</sub> (BASF)
- Chemikaliensicherheit von NM: Fallbeispiele Böhmit und Silber (Bayer)

Chemikaliensicherheit von NM: Fallbeispiele TiO<sub>2</sub>, SiO<sub>2</sub> und ZrO<sub>2</sub>

| Endpunkt                                  | Nano-<br>TiO <sub>2</sub>       | Nano-<br>SiO <sub>2</sub>        | Nano-<br>ZrO <sub>2</sub> |
|-------------------------------------------|---------------------------------|----------------------------------|---------------------------|
| Akute Toxizität                           |                                 |                                  |                           |
| Reizwirkung                               |                                 |                                  |                           |
| Sensibilisierung                          |                                 |                                  |                           |
| Toxizität nach wiederholter Exposition    |                                 |                                  |                           |
| Gentoxizität                              |                                 |                                  |                           |
| Karzinogenität                            | _                               |                                  |                           |
| Reproduktionstoxizität<br>(Fruchtbarkeit) |                                 |                                  |                           |
| Reproduktionstoxizität<br>(Entwicklung)   |                                 |                                  |                           |
|                                           | Daten vorhanden (Nanomaterial)  |                                  | naterial)                 |
|                                           | Daten v                         | Daten vorhanden (Nanomaterial ?) |                           |
|                                           | Keine (validen) Daten vorhanden |                                  | rhanden                   |

#### Chemikaliensicherheit von NM: Fallbeispiele Böhmit und Ag

nan

| Endpunkt                                  | Nano-<br>Böhmit        | Nano-Silber                        |  |
|-------------------------------------------|------------------------|------------------------------------|--|
| Akute Toxizität                           | möglich                | möglich                            |  |
| Akute, lokale<br>Reizwirkung              | möglich                | möglich                            |  |
| Sensibilisierung                          | möglich                | Humanerfahrung?<br>-> IVDK-Anfrage |  |
| Toxizität nach<br>wiederholter Exposition | möglich<br>(inhalativ) | möglich                            |  |
| Gentoxizität/<br>Mutagenität              | möglich                | möglich                            |  |
| Karzinogenität                            | ?                      | ?                                  |  |
| Reproduktionstoxizität                    | möglich                | (möglich)                          |  |

Bayer MaterialScience

BAS

#### Rot: auf Basis des Wirkprinzips beurteilt

T. Kuhlbusch



# AP 6 - Abschätzung potentieller gesundheitlicher Risiken

- Chemikaliensicherheit von NM: Fallbeispiele TiO<sub>2</sub>, SiO<sub>2</sub> und ZrO<sub>2</sub> (BASF)
- Chemikaliensicherheit von NM: Fallbeispiele Böhmit und Silber (Bayer)
- Expositionsabschätzung synthetisch hergestellter NM aus verbrauchernahen Produkten (BfR)



(BAQER) Bayer MaterialScience

BASE

## AP 6 - Abschätzung potentieller gesundheitlicher Risiken

- Chemikaliensicherheit von NM: Fallbeispiele TiO<sub>2</sub>, SiO<sub>2</sub> und ZrO<sub>2</sub> (BASF)
- Chemikaliensicherheit von NM: Fallbeispiele Böhmit und Silber (Bayer)
- Expositionsabschätzung synthetisch hergestellter NM aus verbrauchernahen Produkten (BfR)
- Übersicht zu Freisetzungsszenarien an Arbeitsplätzen (IUTA)
- Ansätze zur Gefährdungsabschätzung von NM am Arbeitsplatz (BAuA)

nanoGEM Abschlußkonferenz in der BfR in Berlin 12.-13. 2013 Mehr auf www.nanogem.de



BAYER) Bayer MaterialScience

nan



#### www.nanoGEM.de



# Danke

