NanoTrack **Benthic Food Chain Studies with TiO₂ Nanoparticles**

Carl W. Isaacson^a, Hannah Schug^{a,b}, Laura Sigg^{a,c}, Adrian Ammann^a, and Kristin Schirmer^{a,c,d} ^aEawag (Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland),^bUniversity of Konstanz, Konstanz, Germany, ^cETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland, ^dEPFL, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland

Materials

Culturing P. acumintus

- Single nematode isolated from the Chriesbach River
- Cultured in media of protozoa pellet, wheat seed, cholesterol and hemoglobin
- Bacteria endosymbiotic to the nematode feed on media
- Nematode feeds on bacteria

Chriesbach River 8.2 pН 3.7 mg/L DOC Ionic Strength 8 mM Ca^{+2} 2.6 mM Mg^{+2} 0.6 mM 0.97 mM Cl-0.84 mM Na⁺

Kinetics of TiO₂ uptake

- Expose nematodes to 1 and 10 mg/L TiO₂ in Chriesbach river water
- Expose and depurate over the course of 24 hrs
- Measure TiO₂ by LSC or HF digestion followed by ICP-MS

Effect of Concentration on Uptake

- Exposed to 0.01-100 mg/L Nb -TiO₂ in Chriesbach river water
- After for 48 hour exposure, nematodes washed and uptake of TiO₂ quantified
- Uptake from water and from biofilm

Characterization of TiO₂ Nanoparticles in Aqueous Matrices

Size and Surface Charge

TiO₂ Ascorbic Acid

Kinetics of TiO₂ Nanoparticles Uptake and Depuration

16	hours
10	nours

- Steady state between 16 and 24 hours
- compared to 10 mg/L
- Fast and incomplete depuration

Uptake of TiO₂ Nanoparticles by P. acuminatus

Uptake of TiO₂ by *Plectus acuminatus*

- Nematodes can take up TiO₂ nanoparticles directly from the aqueous phase
- At low TiO₂ nanoparticle exposure concentrations uptake deviates from linearity
- Environmental exposures are likely to be several orders of magnitude lower, than lowest concentration tested

- At high TiO₂ nanoparticle exposure concentrations, the concentration factor is fairly constant
- At low TiO₂ nanoparticle exposure concentrations, the concentration factor increases
- If a thermodynamic paradigm was applicable the concentration factor would be constant across all exposure concentrations

Hyperspectral Imaging of TiO₂ Nanoparticles Uptake

TiO₂ nanoparticles in suspension

Results & Discussion

- Size and charge of TiO₂ nanoparticles depend on chemistry of solution and particle surface
- All TiO₂ readily sediment from suspension in Chriesbach water
- *P. acuminatus* uptake TiO₂ increases over 16 hours, constant between 16 and 24

Control nematode

Matching of TiO₂ Spectra

hours

- *P. acuminatus* readily depurate TiO₂, but depuration is incomplete
- TiO₂ nanoparticles uptake is dose dependent at higher particle concentrations, but is non-linear at lower concentrations
- The concentration factor is not constant over the exposure concentrations studied, indicating that the thermodynamic paradigm may not apply
- Uptake of TiO₂ nanoparticles is readily visualized with hyperspectral imaging

References

1) Ferry et al Nature Nanotechnology, 2009, 4, 441-444 2) Keller et al ES & T, 2010, 44, 1962-1967 3) Kotsokechagia *et al* Langmuir, **2008**, *24*, 6988–6997

Federal Ministry of Education and Research

We acknowledge funding by the BMBF