

# Highlights der Forschungsergebnisse aus nanoGEM

Thomas A.J. Kuhlbusch



### **Systematische Matrix von Materialien**



12 Nanomaterialien (nanoGEM) + 3 Komposite

+ 4 Referenzmaterialien (OECD, NanoCare)

+ 2 lumineszente Nanomaterialien (nanoGEM)

Alle sterilisiert (WWU) vor Versand

nur für AP3 Biokinetik



### Materialdaten (APQ + AP1): PCA der Nanomaterialien



### Freisetzung aus Nanokompositen (Schleifen)



















**Bayer Technology Services** 

nanoGEM Abschlusskonferenz, Highlights, Juni 2013

T. Kuhlbusch

### Freisetzung aus PA.SiO2



1um

# P80 Schleifpapier250g Auflagegewicht1,8 m/s Relativgeschwindigkeit





- Schleifen erzeugt 100 µmgroße Polymer-Fragmente, die auf ihrer Oberfläche das originale Komposit darstellen
- Keine Hinweise auf freie SiO<sub>2</sub>
  Partikel durch Schleifen.

vergl. auch Vorbau et al. 2009, Saber et al. 2010



nanoGEM Abschlusskonferenz, Highlights, Juni 2013

T. Kuhlbusch

### Verwitterung + Freisetzung Kooperation nanoGEM – NIST (US) – NanoPolyTox (FP7)





- Qualitativ gleiche Fragmente aus spontaner Freisetzung in Regenwasser und aus Immersion: 90% Polymer
- <u>Etwa 3mg / MJ</u>, gleiche Größenordnung aber mehr durch Regen (X) statt UV+Immersion (—)
- Weitere Harmonisierung in EU SUN + GuideNano + ILSI NanoRelease (EPA)



| Material         | Markierung              | Detektion       |                   |
|------------------|-------------------------|-----------------|-------------------|
| TiO <sub>2</sub> | Lumineszenz @Eu         | optisch         |                   |
| SiO <sub>2</sub> | Lumineszenz @Si         | optisch         | für biokinetische |
|                  | Lumineszenz @FITC       | optisch         | Untersuchungen    |
|                  | Lumineszenz @FITC + TxR | J               |                   |
| TiO <sub>2</sub> |                         | Raman, ToF-SIMS |                   |
| ZrO <sub>2</sub> |                         | Raman, ToF-SIMS |                   |
| Ag               |                         | Raman, ToF-S    | IMS               |



### **Eu-dotierte TiO<sub>2</sub>-Nanopartikel (TiO<sub>2</sub>@Eu)**



#### Flammenreaktor mit

Titan-Tetraisopropoxid +  $Eu(NO_3)_3$  in 2-Propanol ( $C_3H_8O$ )



T. Kuhlbusch

### Adsorptionsmarkierung mit Albumin: Reinigung, zelluläre Aufnahme in vitro + in vivo



nanoGEM Abschlusskonferenz, Highlights, Juni 2013



### **Proteinabsorption und Toxikologie**

> NM, Proteinadsorption und toxikologische Wirkung



Hypothese: *In situ* Charakterisierung ermöglicht Beschreibung von Struktur-Wirkungs-Beziehungen.

### Interaktion mit Proteinen: DMEM + FKS



T. Kuhlbusch

GE

M

nanc

**BfR** 

### Lipidaffinität gering, durch Protein verstärkbar



ح

nanc

### Korrelation der Toxizitätsdaten Effekte in vivo und Proteinbeladung der Partikel







Je stärker die Proteinbindung desto stärker der schädigende Effekt in vivo.

Gesamtproteinbindung an den verschiedenen SiO<sub>2</sub>-Varianten (1D Gel)

### SiO2-NP: Vergleich Makrophagenmodell vs. Instillation



Korrelation des toxikologischen Ranking zwischen in-vitro und in-vivo für verschieden beschichtete SiO<sub>2</sub> G E

M



### Toxizität im vorgeschädigten Organismus Instillationsstudien in der Maus



Aus Veröffentlichungsgründen nicht gezeigt

# SiO<sub>2</sub> naked/ SiO<sub>2</sub>-PEG aber nicht SiO<sub>2</sub>-P/ SiO<sub>2</sub>-NH<sub>2</sub> verschärfen allergische Atemwegsentzündungen!

nanoGEM Abschlusskonferenz, Highlights, Juni 2013

### Ergebnisse der Inhalationsversuche





### In vivo Daten (PCA)



SIMCA 13.0 - 09.06.2013 15:17:17 (UTC+C

nar

- Großes Cluster an "untoxischen" Materialien
- Abgegrenzt davon SiO<sub>2</sub> naked, TiO<sub>2</sub>, ZnO, Ag50 (NM mit Effekten)
- Aber ZnO & TiO<sub>2</sub> liegen nicht zusammen  $\rightarrow$  unterschiedlich

### In vivo Daten (PCA)



Beiträge der einzelnen Endpunkt für die PCA der jeweiligen NM SiO<sub>2</sub> Varianten verhalten sich unterschiedlich in den untersuchten Endpunkten

nar

### In vitro Daten (PCA)





- großes Cluster an Materialien mit geringer Toxizität (Referenz BaSO<sub>4</sub>)
- deutlich abgegrenzt davon die NM mit Effekten

### in vitro & in vivo Toxikologie (PCA)



- großes Cluster an Materialien mit geringer Toxizität (Referenz BaSO<sub>4</sub>)

- SiO<sub>2</sub> Amino und Ag200 relativ nahe an BaSO<sub>4</sub> → geringe Toxizität

- Abgegrenzt davon die NM mit AG50, ZnO & TiO<sub>2</sub>, weit auseinander

nar



- Gesundheitliche Wirkungen von Nanomaterialien sind durch bekannte Wirkprinzipien zu beschreiben
- ✓ Etablierte Bewertungsmethoden sind nutzbar
- Kategorisierender Ansatz ist möglich und erleichtert Bewertung
- ✓ Trotzdem: immer umfassende Datenbewertung nötig

### Risikoabschätzung: Zusammenfassung 2

- ✓ Bisher zeigen die Daten:
  Nanotoxikologie ist vor allem Staubtoxikologie
- ✓ Hier: alveolengängige, un-/schwerlösliche Stäube
- ✓ Differenzierung granuläre & faserige Stäube
- v. a.: Minderung Exposition gegenüber kritischen Stäuben

Das tägliche Brot:

Es bleiben quasi immer Datenlücken und Fragen offen:

Risikobewertung/-abschätzung ist ein iterativer Prozess



### Resümee



- Freisetzung von größeren Partikeln (NM + Matrix) bei Schleifen
  zeigten geringere Toxizität
- Verschiedene neue Methoden zur Detektion von NM entwickelt und evaluiert
- Interaktion NM mit Proteinen und Lipiden untersucht und Bedeutung für die Toxikologie identifiziert
- > Oberfläche beeinflusst die Toxizität von Nanomaterialien
- In-vitro und in-vivo ähnliches Ranking
- Übergeordnetes Prinzip geeignet u.a. für Gruppierungen
  vereinfachtes Testen, Möglichkeit der Modifikation zur Verringerung der Toxizität
- Interdisziplinäre und Interessensübergreifend Zusammengearbeitet
- Viele internationale Kooperationen und Verwendung von nanoGEM-Resultaten
- ➢ Beiträge zur OECD, NanoSafetyCluster, CEN.....



### www.nanoGEM.de



# Danke

