

NM interference in the MTS assay

AUTHORED BY:	DATE:
Cordula Hirsch	20.01.2014

REVIEWED BY:	DATE:
Harald Krug	10.04.2014

APPROVED BY:	DATE:

DOCUMENT HISTORY

Effective Date	Date Revision Required	Supersedes
15.02.2014	DD/MM/YYYY	DD/MM/YYYY

Version	Date	Descr	iption of the Change	Author / Changed by
1.0	15/02/2014	All	Initial Document	Cordula Hirsch
1.1	19/10/2016	1	volume ratios adapted for RPMI, MTS, formazan and nanoparticle dilutions (chapter 6.1 and Figure 2)	Cordula Hirsch

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		1/8

Table of Content

1		Intro	oduct	tion	3
2		Prin	ciple	e of the Method	3
3		Appl	licabi	pility and Limitations	3
4		Rela	ted [Documents	3
5		Equi	pme	ent and Reagents	1
	5.2	1	Equ	۱ipment	1
	5.2	2	Rea	agents	1
	5.3	3	Rea	agent Preparation	1
		5.3.1	1	Sodium sulfite (Na ₂ SO ₃)	1
		5.3.2	2	Pluronic F-127	1
6		Proc	edur	re	1
	6.2	1	Dilu	ution of nanomaterials	1
	6.2	2	Red	duction of MTS to formazan	5
	6.3	3	MTS	S working solution	5
	6.4	4	Арр	blication into 96-well plate	5
	6.5	5	Data	a evaluation	7
7		Qua	lity C	Control, Quality Assurance, Acceptance Criteria	7
8		Heal	lth ar	nd Safety Warnings, Cautions and Waste Treatment	7
9		Abb	revia	ations	3
1	0	Re	efere	ences	3

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		2/8

1 Introduction

Nanomaterials (NM) have been shown to interfere in different *in vitro* assays (e.g. Belyanskaya, 2007; Casey, 2007; Guo, 2008; Monteiro-Riviere, 2006; Pulskamp, 2007; Wörle-Knirsch, 2006; for a review see also Kroll et al., 2009). To avoid false positive as well as false negative results it's thus important to elucidate possibilities of interference and to find ways to assess them experimentally. This SOP describes the theoretical considerations about potential interference reactions of NMs in a MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-cyrboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) cell viability assay and the experimental implementation.

2 Principle of the Method

The CellTiter 96[®] AQ_{ueous} One Solution (later on simply called MTS) contains the MTS reagent itself and an electron coupling reagent (phenazine ethosulfate;PES) in a stable solution. MTS is added directly to the cells. PES is membrane permeable, enters the cell and is reduced by mitochondrial enzymes (dehydrogenases involving NADPH or NADH), active only in viable cells. The reduced PES is then able to transform the MTS reagent to its formazan product. The resulting color is quantified by an absorbance measurement at 490 nm.

In terms of NM interference in this assay three possibilities have to be considered:

- 1. NMs stick to the cell culture plastic thereby generating an absorbance signal by themselves.
- 2. NMs are able to reduce MTS (either the MTS reagent directly or via the reduction of the electron coupling reagent (PES)).
- 3. The presence of NMs changes the absorbance value of the reduced MTS (formazan).

These considerations are addressed in cell free control experiments.

3 Applicability and Limitations

Values obtained in the cell free control experiments cannot be calculated against values from cellular measurements. They serve as qualitative estimations of NM only reactions that do not involve cellular contribution.

4 Related Documents

 Table 1: Documents needed to proceed according to this SOP and additional NM-related interference control protocols.

Document ID	Document Title
M_NM	Suspending and diluting Nanomaterials – Metal oxides and NM purchased as
suspension_metal	monodisperse suspensions
oxides	
M_NM	Suspending and diluting Nanomaterials – Carbon based nanomaterials
suspension_	
carbon based	

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		3/8

5 Equipment and Reagents

5.1 Equipment

- Absorbance reader for multi-well plates (to measure optical density (OD) at a wavelength of λ =490 nm)
- Conical tubes (15 ml and 50 ml; polypropylene or polystyrene; e.g. from Falcon)
- Flat bottom 96-well cell culture plates
- Microreaction tubes (1.5 ml; e.g. from Eppendorf)
- Multichannel pipette (with at least 8 positions; volume range per pipetting step at least from 50 μl to 200 μl)
- Vortex[®]

5.2 Reagents

To dilute carbon based NM:

- 10x concentrated RPMI-1640
- Sodium bicarbonate solution, 7.5% (NaHCO₃) [CAS-number: 144-55-8]

Buffers, solvents and detection dye itself:

- CellTiter96[®] AQ_{ueous} One Solution [*Promega; Cat. No. G3580-G3582*]
- Sodium sulfite (Na₂SO₃) [CAS number: 757-83-7]
- Roswell Park Memorial Institute Medium (RPMI-1640) WITHOUT phenol red
- Pluronic F-127 [CAS number: 9003-11-6]

5.3 Reagent Preparation

5.3.1 Sodium sulfite (Na₂SO₃)

Stock:

• 100 mM in ddH₂O: 1.26 g/100 ml

Note: Store at 4°C for a maximum of 1 week only!

5.3.2 Pluronic F-127

Stock:

• 160 ppm in ddH₂O: 160 μg/ml (=16 mg/100 ml)

6 Procedure

6.1 Dilution of nanomaterials

For this SOP we distinguish two types of nanomaterials (NM) according to their solvent, suspension properties and highest concentrations used in the assay. See also respective related documents (3).

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		4/8

- (1) Metal oxide NM, Polystyrene beads and all NM delivered as monodisperse suspensions by the supplier: solvent either determined by the supplier or ddH₂O; sub-diluted in ddH₂O; highest concentration in assay 100 µg/ml
- (2) Carbon based NM: suspended and sub-diluted in 160 ppm Pluronic F-127; highest concentration in assay 80 μ g/ml

Volumes given in the following dilution schemes are enough for one 96-well plate.

Note: "Mixing" in the context of diluting NMs means, the solvent containing tube is put on a continuously shaking Vortex[®] and the previous sub-dilution (or stock suspension, respectively) is put dropwise into the shaking solvent. The resulting suspension stays on the Vortex[®] for additional 3 seconds before proceeding with the next sub-dilution.

(1) Metal oxide NM:

Prepare serial sub-dilutions of the stock suspension (1.2 mg/ml) in ddH₂O:

- Label ten microreaction tubes (1.5 ml total volume) with 1 to 10 (relates to steps 1-10 below).
- Add 1 ml of the 1.2 mg/ml stock suspension to tube 1.
- Add 500 μl ddH_2O to tubes 2 to 10.
- 1. 1 ml NM stock suspension (1.2 mg/ml) \rightarrow 1200 µg/ml (1)
- 2. 500 μ l of 1200 μ g/ml (1) are mixed with 500 μ l ddH₂O \rightarrow 600 μ g/ml (2)
- 3. 500 μ l of 600 μ g/ml (2) are mixed with 500 μ l ddH₂O \rightarrow 300 μ g/ml (3)
- 4. 500 μ l of 300 μ g/ml (3) are mixed with 500 μ l ddH₂O \rightarrow 150 μ g/ml (4)
- 5. 500 µl of 150 µg/ml (4) are mixed with 500 µl ml ddH₂O \rightarrow 75 µg/ml (5)
- 6. 500 µl of 75 µg/ml (5) are mixed with 500 µl ddH₂O \rightarrow 37.5 µg/ml (6)
- 7. 500 µl of 37.5 µg/ml (6) are mixed with 500 µl ddH₂O \rightarrow 18.8 µg/ml (7)
- 8. 500 µl of 18.8 µg/ml (7) are mixed with 500 µl ddH₂O \rightarrow 9.4 µg/ml (8)
- 9. 500 μ l of 9.4 μ g/ml (8) are mixed with 500 μ l ddH₂O \rightarrow 4.7 μ g/ml (9)
- 10. 500 μ l ddH₂O \rightarrow solvent control (10)

Final dilutions are prepared directly in the 96-well plate during assay performance as shown in Figure 2.

(2) Carbon based NM:

Prepare serial sub-dilutions of the stock suspension (480 μ g/ml) in 160 ppm Pluronic F-127:

- Label ten microreaction tubes (1.5 ml total volume) with 1 to 10 (relates to steps 1-10 below).
- Add 1 ml of the 480 μ g/ml stock suspension to tube 1.
- Add 500 μ l 160 ppm Pluronic F-127 to tubes 2 to 10.
- 1. 1 ml NM stock suspension (480 μ g/ml) \rightarrow 480 μ g/ml (1)
- 2. 500 μ l of 480 μ g/ml (1) are mixed with 500 μ l Pluronic F-127 \rightarrow 240 μ g/ml (2)
- 3. 500 μ l of 240 μ g/ml (2) are mixed with 500 μ l Pluronic F-127 \rightarrow 120 μ g/ml (3)
- 4. 500 μ l of 120 μ g/ml (3) are mixed with 500 μ l Pluronic F-127 \rightarrow 60 μ g/ml (4)
- 5. 500 μ l of 60 μ g/ml (4) are mixed with 500 μ l Pluronic F-127 \rightarrow 30 μ g/ml (5)

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		5/8

- 6. 500 μ l of 30 μ g/ml (5) are mixed with 500 μ l Pluronic F-127 \rightarrow 15 μ g/ml (6)
- 7. 500 µl of 15 µg/ml (6) are mixed with 500 µl Pluronic F-127 \rightarrow 7.5 µg/ml (7)
- 8. 500 μ l of 7.5 μ g/ml (7) are mixed with 500 μ l Pluronic F-127 \rightarrow 3.75 μ g/ml (8)
- 9. 500 μ l of 3.75 μ g/ml (8) are mixed with 500 μ l Pluronic F-127 \rightarrow 1.88 μ g/ml (9)
- 10. 500 µl 160 ppm Pluronic F-127 \rightarrow solvent control (10)

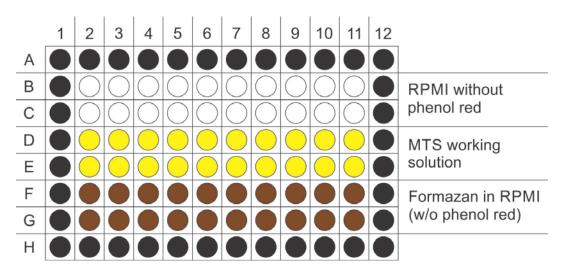
Final dilutions are prepared directly in the 96-well plate during assay performance as shown in Figure 2.

6.2 Reduction of MTS to formazan

Volumes are given for one 96-well plate as shown in Figure 1.

- 5 ml RPMI without phenol red are mixed with 1 ml MTS and 50 μ l 100 mM Na₂SO₃.
- Mix on the vortex.
 Note: The yellow MTS turns almost immediately into its brownish formazan product.

6.3 MTS working solution

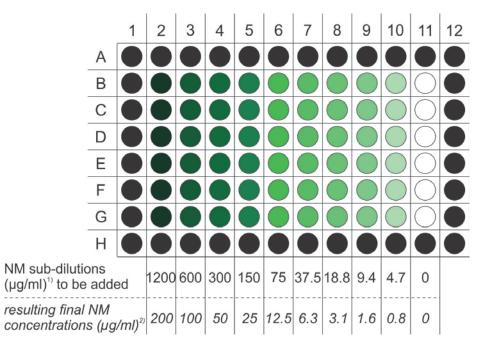

• 5 ml RPMI without phenol red are mixed with 1 ml MTS.

6.4 Application into 96-well plate

Make sure to have sub-dilutions of NMs ready.

Note: All NM dilutions have to be vortexed directly before application.

• Distribute 100 µl per well of RPMI without phenol red (white wells), MTS working solution (yellow wells) and formazan (in RPMI without phenol red; brown wells) into a 96-well plate as shown in Figure 1.



• Black wells remain empty.

Figure 1: Distribution of RPMI without phenol red, MTS working solution and Formazan in RPMI (w/o phenol red) into a 96-well plate.

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		6/8

- Add 20 μl of the appropriate NM sub-dilution per well as shown in Figure 2.
 Note: Due to the 1:6 dilution of the NM sub-dilutions in RPMI, MTS or Formazan, respectively, final concentrations are reduced by a factor of six.
- Outermost wells (black in Figure 2) remain empty.

Figure 2: Application of NM.

Add 20 μ l of the respective NM sub-dilution per well of the 96-well plate. Outermost wells remain empty. Incubate for 60 min in a humidified incubator at 37°C and 5% CO₂.

¹⁾ NM concentrations given here refer to metal oxide NM. Carbon based NM concentrations are detailed in the text. ²⁾ Due to the 1:6 dilution of NM sub-dilutions in RPMI, MTS or Formazan, respectively, final concentrations are reduced by a factor of six.

- Incubate the 96-well plate for 60 min in a humidified incubator at 37°C and 5% CO₂.
- Measure the absorbance at 490 nm in a plate reader.

6.5 Data evaluation

Calculate the mean of the six technical replicates of each concentration. These mean absorbance values are plotted in a bar chart or as a dot plot to compare treated and untreated samples directly. Furthermore, the effect can be expressed in percent of the untreated/solvent treated control.

7 Quality Control, Quality Assurance, Acceptance Criteria

8 Health and Safety Warnings, Cautions and Waste Treatment

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		7/8

9 Abbreviations

ddH ₂ O	double-distilled water
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3-cyrboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
	tetrazolium, inner salt
NADH	Nicotinamide adenine dinucleotide (reduced form)
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced form)
NM	Nanomaterial
OD	Optical density
PES	Phenazine ethosulfate
ppm	parts per million
RPMI	Roswell Park Memorial Institute medium

10 References

Belyanskaya L, Manser P, Spohn P, Bruinink A, Wick P; 2007: The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. *Carbon* 45: 2643-2648

Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G; 2007: Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. *Carbon* 45: 1425-1432

Guo L, von dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH; 2008: Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. *Small* 4: 721-727

Kroll A, Pillukat MH, Hahn D, Schnekenburger J; 2009: Current *in vitro* methods in nanoparticle risk assessment: Limitations and challenges

Monteiro-Riviere NA, Inman AO; 2006: Challenges for assessing carbon nanomaterial toxicity to the skin. *Carbon*44: 1070-1078

Pulskamp K, Diabate S, Krug HF; 2007: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. *Toxicol. Lett.* 168: 58-74

Wörle-Knirsch JM, Pulskamp K, Krug HF; 2006: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. *Nano Lett.* 6: 1261-1268

Document Type	Document ID	Version	Status	Page
SOP	V_MTS_interference	1.1		8/8