EXPOSURE TO CERAMIC AND PROCESS-GENERATED NANOPARTICLES DURING ATMOSPERIC PLASMA SPRAYING

IDAEA-CSIC, BARCELONA, SPAIN

<u>APOSTOLOS SALMATONIDIS</u>, A.S. FONSECA, M. VIANA, X. QUEROL, A. LÓPEZ, P. CARPIO, E. MONFORT

Framework: **CERASAFE**

CERASAFE is a European project which addresses the issue of **"Safe production and use of nanomaterials in the ceramic industry.** It proposes an integrated approach to environmental health and safety (EHS) in the specific industrial sector :

- Characterize NP release scenarios in this sector and assess exposure by addressing the release mechanisms, toxicity, NP characterization, as well as mitigation measures
- Develop an online tool to discriminate engineered nanoceramic particles from background aerosols
- Establish a set of Good Manufacturing and Use Practices for nanoceramic materials, including risk assessment and recommendations

Motivation

Atmospheric Plasma Spraying

- Atmospheric pressure (ambient conditions)
- The feedstock material is spayed on the substrate
- Application of highperformance coatings (e.g. wear and corrosion resistant, thermal barriers)
- High energy process
- High potential for NP formation and release

Measurement Methodology

Results: N and D_p

Feedstock: micro-suspension (ceramic glass powder <63 µm + 1% of fluidized nano-7 nm)

Viana M., Fonseca A.S., Lopez-Lilao A., Monfort E., 2016 submitted

Results: Number concentration

Feedstock: micro-suspension (ceramic glass powder <63 µm + 1% of fluidized nano-7 nm)

- Number concentration (N) values from the plasma chamber are 322 times higher than the background values
- Number concentration (N) values from the breathing zone are 21 times higher than the background values

Results: Number concentration

1. Released particle concentration = (Total particle number N_{total} in workplace air during spraying) - (Total particle number background)

Mitigation strategies

	Initial state	Final state	 Reduction of 80% in
Breathing zone	 Ventilation by natural convection (ACH<2) 	 Force ventilation (ACH~14) A precise protocol for opening and closing the plasma room door (delay) 	terms of N in the breathing zone, after mitigation measures
Plasma chamber	 Air entrance in the plasma chamber by a single point from the breathing zone 	 Air entrance in the plasma chamber from outside Improved air entrance distribution using a multipoint system surrounding the plasma chamber Enhanced sealing of the extraction system (ACH~11) 	 However, number concentration values still above the NRV (N > 40 000 cm⁻³)

ACH: Air Change per Hour (h^{-1})

TEM analysis (EDS add-on)

TEM samples were collected from the Plasma chamber

Grain size (feedstock)	Composition (feedstock)	TEM
Micro	Na ₂ O; SiO ₂ ; CaO; P ₂ O ₅ (1% nano)	a., b.
Micro	Na ₂ O; SiO ₂ ; CaO; P ₂ O ₅ (1% nano)	a., b.
Nano	ZrO ₂ -Y ₂ O ₃	C.
Nano	$Gd_2Zr_2O_7$	d.

- Spherical shaped particles are unintentionally generated, resulting from fusion processes due to high energy condition (*Lahoz et al.,2011; Fonseca et al.,2015*)
- Cubic NPs are probably the original engineered NPs in the feedstock (d.)
- Process-generated NPs from the micro-scaled feedstock also detected

Conclusions

- High NP emissions in terms of particle number were recorded, which for the specific process (atmospheric plasma spraying) have not been reported before
- Major NP emissions were emitted from two sources:
 - due to the high energy processes
 - directly from the feedstock during the projection

- The mitigation measures that have been applied were efficient (80% reduction), but not-yet-sufficient
- NP emissions have been recorded in all of the experiments, regardless the respective feedstock material used (micro or nano)
- The emissions are mainly related to the process rather than to the particle size distribution of the starting material

Acknowledgements

- Institute of Ceramic Technology, Castellon (Spain)
- A.S. Fonseca, M. Viana, X. Querol, A. López, P. Carpio, E. Monfort
- CERASAFE framework and its respective founding agencies, organizations and institutions

<u>www.cerasafe.eu</u>

This project is funded by the **Spanish Ministry of Competiveness and Economy**, supported by **SIINN ERA-NET** and the **European Commission**

Thank you for your attention!

APOSTOLOS SALMATONIDIS

SPANISH NATIONAL RESEARCH COUNCIL (CSIC)

INSTITUTE OF ENVIRONMENTAL ASSESSMENT AND WATER RESEARCH (IDAEA)

Nano Reference Values (NRV)

- NRVs serve as provisional precautionary Occupational Exposure Limits for nanomaterials
- Workers will be exposed to concentrations >> NRV; thus, mitigation measures must be implemented

Description			
	(8-hr TWA)		
Rigid, biopersistent, insoluble, fiber form nanomaterials for which effects similar to those of asbestos are not excluded			
SWCNT or MWCNT or metal oxide fibres	fibers/cm ³		
Non-biodegradable granular nanomaterials in the range of 1–100 nm and density > 6 kg/L $$	20 000		
• Ag, Au, CeO ₂ , CoO, CuO, Fe, Fe _x O _y , La, Pb, Sb ₂ O ₅ , SnO ₂	particles/cm		
	3		
Non-biodegradable granular nanomaterials in the range of 1–100 nm and density < 6 kg/L $$			
 Al₂O₃, SiO₂, TiN, TiO₂, ZnO, nanoclay 	particles/cm		
 Carbon Black, C₆₀, dendrimers, polystyrene 	3		
 Nanotubes, nanofibers and nanowires for which asbestos-like effects are excluded 			
Biodegradable/soluble granular nanomaterials in the range of 1–100nm			
 e.g. NaCl-, fats, flower, siloxane particles 	OEL		
Source: van Broekhuizen et al 2012, AnnOccHyg 56:515-524			