Spotlight April 2023: Recycling rare earths – bacteria assist in the circular economy

Home > Spotlight April 2023: Recycling rare earths – bacteria assist in the circular economy

Rare earths are important components of wind turbines, catalytic converters, fibre optic cables and plasma screens. Since the 17 metals grouped under this term are indispensable for modern technologies, demand and costs are constantly rising. The occurrence of productive mining sites is limited and the production is often costly and environmentally harmful. The advantages of recycling these resources as efficiently as possible, for example from industrial waste water in the fields of mining, electronics or chemical catalysts, are obvious.

In cooperation with the University of Kaiserslautern, researchers at the Technical University of Munich have taken the circular economy of these demanded metals a huge step further: they examined several strains of cyanobacteria for their potential to bind rare earths from aqueous solution – and were successful.

The researchers determined the potential for the so-called biosorption of the rare earths lanthanum, cerium, neodymium and terbium for twelve strains of cyanobacteria. Most of these strains had never before been investigated for biotechnological potential. They come from habitats with extreme environmental conditions.

In a further project, the scientists plan to carry out the experiments on a larger scale in order to advance the industrial application of the results.

 

Original publication:

Michael Paper, Max Koch, Patrick Jung, Michael Lakatos, Tom Nilges and Thomas B. Brück: Rare Earths Stick to Rare Cyanobacteria: Future Potential for Bioremediation and Recovery of Rare Earth Elements. Front. Bioeng. Biotechnol., Sec. Bioprocess Engineering, Volume 11 – 2023

Spotlight April 2023: Recycling rare earths – bacteria assist in the circular economy

Weitere Spotlights


Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

The application of so-called “nanopesticides” (see also cross-sectional text Nanomaterials in plant protection products) is said to have two basic advantages: a smaller amount of pesticide is needed for the same agricultural area and the efficacy is improved. This is necessary to grow enough food for a still growing world population. However, this could also […]

Read more

Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and […]

Read more

Spotlight November 2020: Nanotechnology in the public perception

Spotlight November 2020: Nanotechnology in the public perception

In November, we would like to draw your attention to a publication that examines public perception of the safety of nanomaterials in Austria.It shows, that although there is generally a rather positive attitude towards nanomaterials, there are different opinions on safety issues from different social groups. Further clarification seems necessary. Despite the widespread use of […]

Read more

Spotlight August 2021: Towards FAIR nanosafety data

Spotlight August 2021: Towards FAIR nanosafety data

In August we would like to present a paper on FAIR data. The paper published in Nature Nanotechnology in June 2021 summarises the challenges and provides recommendations for the efficient reuse of nanosafety data in line with the recently established FAIR guiding principles: findable, accessible, interoperable and reusable. This article summarises the know-how on the […]

Read more

Skip to content