One of the greatest challenges facing humanity is to produce clean drinking water under the given circumstances of global warming, population growth and increasing littering. In September, we would like to present a review article that believes one approach to solve this problem is the use of nanoscale wood. In the review, “Advanced Nanowood Materials for the Water-Energy Nexus,” published in the journal Advanced Materials, methods for using wood for water treatment are outlined based on the structure of wood, bottom up or top down. Using the approaches described, wood can be used for water purification, desalination, or chemical removal.
Many examples are shown of how the basic building block of wood, cellulose (a natural polymer), can be processed into nanofibers or polymer matrices, enabling filtration of ultra-small particles.
In contrast, top-down approaches preserve the fundamental structure of wood. For example, naturally occurring channels and mesopores open up the possibility of binding chemicals or applying catalysts. Research with palladium, titanium dioxide, or iron oxide nanoparticles applied to wood showed very good separation of chemicals from water. By chemically modified wood, it was possible to selectively remove copper ions, separate oils and organic solvents, or filter out heavy metals from water.
Wood is an indispensable, climate-neutral raw material due to its ability to bind CO2. In combination with nanoparticles, it may be possible in the future to extend the versatile properties of wood and thus provide a solution approach to water scarcity and environmental pollution.
Original publication:
Chen, X. et al (2021) Advanced Nanowood Materials for the Water–Energy Nexus. Advanced Materials, 33(28), 2001240. doi.org/10.1002/adma.202001240
Weitere Spotlights
Spotlight August 2020: The nanoGRAVUR Grouping approach
In August, we would like to present a paper of the German BMBF project nanoGRAVUR. nanoGRAVUR dealt from 2015-2018 with the grouping of nanostructured materials with regard to occupational safety, consumer and environmental protection and risk mitigation. The approach is now described by the project partners in this paper.Due to the variety of synthetic nanomaterials and the numerous modifications (differences in size, shape, chemical composition and surface functionalization), the effort required to investigate effects and behaviour within the framework of regulatory requirements is…
Read moreSpotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?
In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper. Groundwater is indispensable for the […]
Read moreSpotlight May 2021: Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials
The European Commission’s new Action Plan for a Circular Economy Green Deal, the new European Industrial Strategy as well as the Chemicals Strategy for Sustainability presented in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive economy in the European Union. These strategies require that any new material or product must not […]
Read moreSpotlight August 2021: Towards FAIR nanosafety data
In August we would like to present a paper on FAIR data. The paper published in Nature Nanotechnology in June 2021 summarises the challenges and provides recommendations for the efficient reuse of nanosafety data in line with the recently established FAIR guiding principles: findable, accessible, interoperable and reusable. This article summarises the know-how on the […]
Read more