>
Spotlight September 2021: Wood, the raw material of the future?
One of the greatest challenges facing humanity is to produce clean drinking water under the given circumstances of global warming, population growth and increasing littering. In September, we would like to present a review article that believes one approach to solve this problem is the use of nanoscale wood. In the review, “Advanced Nanowood Materials for the Water-Energy Nexus,” published in the journal Advanced Materials, methods for using wood for water treatment are outlined based on the structure of wood, bottom up or top down. Using the approaches described, wood can be used for water purification, desalination, or chemical removal.
Many examples are shown of how the basic building block of wood, cellulose (a natural polymer), can be processed into nanofibers or polymer matrices, enabling filtration of ultra-small particles.
In contrast, top-down approaches preserve the fundamental structure of wood. For example, naturally occurring channels and mesopores open up the possibility of binding chemicals or applying catalysts. Research with palladium, titanium dioxide, or iron oxide nanoparticles applied to wood showed very good separation of chemicals from water. By chemically modified wood, it was possible to selectively remove copper ions, separate oils and organic solvents, or filter out heavy metals from water.
Wood is an indispensable, climate-neutral raw material due to its ability to bind CO2. In combination with nanoparticles, it may be possible in the future to extend the versatile properties of wood and thus provide a solution approach to water scarcity and environmental pollution.
Original publication:
Chen, X. et al (2021) Advanced Nanowood Materials for the Water–Energy Nexus. Advanced Materials, 33(28), 2001240. doi.org/10.1002/adma.202001240
Weitere Spotlights
Spotlight August 2020: The nanoGRAVUR Grouping approach
In August, we would like to present a paper of the German BMBF project nanoGRAVUR. nanoGRAVUR dealt from 2015-2018 with the grouping of nanostructured materials with regard to occupational safety, consumer and environmental protection and risk mitigation. The approach is now described by the project partners in this paper.Due to the variety of synthetic nanomaterials and the numerous modifications (differences in size, shape, chemical composition and surface functionalization), the effort required to investigate effects and behaviour within the framework of regulatory requirements is…
Read moreSpotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish
Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]
Read moreSpotlight October 2023: Improved hydrogen production through novel catalyst made of three metals
Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]
Read moreSpotlight October 2021: Nanopesticides – a proposal for a risk assessment framework
The application of so-called “nanopesticides” (see also cross-sectional text Nanomaterials in plant protection products) is said to have two basic advantages: a smaller amount of pesticide is needed for the same agricultural area and the efficacy is improved. This is necessary to grow enough food for a still growing world population. However, this could also […]
Read more


