NanoExpo

Home > Research > NanoExpo

NanoExpo – Nanobalance detectors for individual-related measure-ments of nanoparticle exposures

The practical assessment of exposure to nanoscale aerosols that are released from synthetic materials requires a novel measurement technology based on easy-to-operate, robust sensors that are ready for use instantly after switch-on. Since currently suitable nanoparticle detectors for continuous personal and mobile measurements of workplace exposure to synthetic nanoparticles (NP) are not available at an acceptable price of less than 500€, the realisation of this approach calls for a compromise between sensor performance and sensor price.

Within the NanoExpo joint project a cantilever nanoparticle detector “Cantor” was developed that combines a microcontroller-controlled MEMS cantilever resonance balance with an electrophoretic nanoparticle separator. Determination of nanoparticle mass concentrations by means of Cantor is much faster than by means of conventional filter sampling and weighing. An upstream membrane filter or impactor ensures that no microparticles get into the measuring cell.

After calibration using the FMPS (fast mobility particle sizer), a measurement uncertainty of less than ±15% within a measurement range of 0-50µg/m3, and a detection limit of 6.5µg/m3 are achieved for carbon nanoparticles. The sampling time per measurement point is 2.4 min. The error of measurement remains at <15% in the case of variations in environmental conditions such as temperature (ΔT<1°C), humidity (ΔrF <10 %), and pressure (Δp<1kPa). The completely integrated setup with air intake, control and read-out electronics as well as LCD display weighs less than 400g. The life of the battery during continuous operation exceeds an eight-hour working shift.

The expected price of the device is particularly attractive: Due to the fact that the MEMS-manufactured cantilever balance is the only more expensive component, whereas the remaining components are standard parts, the component costs amount to only 200€. Considerable price reductions can be achieved by manufacturing larger quantities.

In an air-conditioned measurement chamber, comprehensive Cantor tests were carried out on carbon, TiO2 and SiO2 aerosols and cigarette smoke and e-cigarette vapour were analysed in the laboratory. After testing, Cantor can be easily dismantled and regenerated. Upon further optimisation of the cantilever balance and evaluation circuitry, rapid improvement is expected for parameters with a detection limit below 1µg/m3 and a sampling time of less than 1min as well as for weight and volume of the measurement cell.


Project lead

Institute of Semiconductor Technology, TU Braunschweig PD Dr. Erwin Peiner, TU Braunschweig, Institute of Semiconductor Technology

Partner

Institute of Semiconductor Technology, TU Braunschweig TU Braunschweig, Institute of Semiconductor Technology
Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institute (WKI) Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institute (WKI)

Duration : 01.05.2010 – 30.04.2013 (extended to 31.10.2013)


Project Lead

Project Partners


Publications

2014

  • Merzsch, S., F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, A. Waag (2014). "Production of vertical nanowire resonators by cryogenic-ICP–DRIE."Microsystem Technologies 20(4-5): 759-767.
  • Wasisto, H. S., K. Huang, S. Merzsch, A. Stranz, A. Waag, E. Peiner (2014). "Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications." Microsyst Technol 20(4-5): 571-584.
  • Wasisto, H. S., Q. Zhang, S. Merzsch, A. Waag, E. Peiner (2014). "A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors." Microsyst Technol 20(4-5): 559-569.
  • Wasisto H.S., S. Merzsch, E. Uhde, T. Salthammer, A. Waag, E. Peiner (2014). Handheld Micromechanical Cantilever Mass Sensor for Early Detection of Carbon Nanoparticles. 17. ITG/GMA-Fachtagung "Sensoren und Messsysteme 2014", 3. - 4. Juni 2014, Nürnberg, Deutschland. ITG-Fachbericht Band 250, ISBN 978-3-8007-3622-5.
  • Wasisto H.S., S. Merzsch, F. Steib, E. Uhde, A. Waag, E. Peiner (2014). Surface-Enhanced Silicon Resonant Cantilever Sensors with Vertical Nanowires. 17. ITG/GMA-Fachtagung "Sensoren und Messsysteme 2014", 3. - 4. Juni 2014, Nürnberg, Deutschland. ITG-Fachbericht Band 250, ISBN 978-3-8007-3622-5.

2013

  • Wasisto, H. S., S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2013). "Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever." Sensor Actuat B-Chem 180: 77-89.
  • Qiu, H. C., P. Schwarz, D. Feili, S. Merzsch, E. Peiner, X. Z. Wu, H. Seidel (2013). "Electrical performance analysis and characterization of two port piezoelectric resonators." Microsyst Technol 19(8): 1131-1136.
  • Wasisto, H. S., S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2013). "Portable cantilever-based airborne nanoparticle detector." Sensor Actuat B-Chem 187: 118-127.
  • Wasisto, H. S., S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2013). "Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection." Sensor Actuat B-Chem 189(0): 146-156.
  • Wasisto, H. S., A. Stranz, E. Peiner, A. Waag, E. Uhde, S. Merzsch, T. Salthammer (2013). "Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators." Micro & Nano Letters 8(10): 554-558.
  • Wasisto, H. S., S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2013). "Silicon Nanowire Resonators: Aerosol Nanoparticle Mass Sensing in the Workplace." IEEE Nanotechnology Magazine 7(2): 18-23.
  • Wasisto, H. S., S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2013). "Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors." Sensor Actuat A-Phys 202(0): 90-99.

2012

  • Merzsch, S., H. S. Wasisto, A. Waag, I. Kirsch, E. Uhde, T. Salthammer, E. Peiner (2012). "Cleaning of structured templates from nanoparticle accumulation using silicone." Microsyst Technol 18(7-8): 835-842.
  • Wasisto, H. S., S. Merzsch, A. Waag, I. Kirsch, E. Uhde, T. Salthammer, E. Peiner (2012). "Determination of exposure to engineered carbon nanoparticles using a self-sensing piezoresistive silicon cantilever sensor." Microsyst Technol 18(7-8): 905-915.
  • Wasisto, H. S., S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner (2012). "Femtogram Mass Measurement of Airborne Engineered Nanoparticles using Silicon Nanopillar Resonators." Procedia Engineering 47(0): 289-292.
  • Wasisto, H. S., S. Merzsch, A. Waag, I. Kirsch, E. Uhde, T. Salthammer, E. Peiner (2012). "Effect of Photoresist Coating on the Reusable Resonant Cantilever Sensors for Assessing Exposure to Airborne Nanoparticles." Procedia Engineering 47(0): 302-305.

2011

2010

  • Manzaneque, T., J. Hernando-García, A. Ababneh, H. Seidel, ue. Soekmen, E. Peiner, U. Schmid, J. L. Sánchez-Rojas (2010). "Quality factor enhancement in AlN-actuated MEMS by velocity feedback loop." Procedia Engineering 5(0): 1494-1497.
  • Soekmen, UE., A. Stranz, A. Waag, A. Ababneh, H. Seidel, U. Schmid, E. Peiner (2010). "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications." J Micromech Microeng 20(6): 064007
  • Peiner, E. (2010). Winzlingen auf der Spur – Nanodetektoren sollen den Umgang mit Nanopartikeln sicherer machen. GIT Labor-Fachzeitschrift 11/2010 835.
Skip to content