Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and resin ingredients can be separated without harming the materials. The process is not limited to rotor blades but can be applied to all composite materials. Particularly, because of the recovery of the expensive carbon fibres, this method is worthy of attention and leads to a better circular economy, thus, to improved sustainability.
Composite materials based on synthetic resins, usually reinforced with carbon fibres, are designed for long durability and are therefore fundamentally difficult to degrade. Until now, they have been stored as waste in landfills and thus removed from the cycle of materials.
Scientists at Aarhus University and the Danish Technological Institute have now filed a patent application for a process that, based on a catalyst containing ruthenium and various solvents, can break down the epoxy matrix and expose the carbon fibres without damaging them. The ingredients bisphenol A and the glass or carbon fibres are recovered and can be reused.
However, ruthenium is a rare and expensive metal, and the efficiency of the process has not yet been scaled-up to industrial level, but it is more than a glimmer of hope on the road to full recovery of the highly stable composites.
Original publication:
Ahrens, A et al. (2023). Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature, 617, 730–737
Weitere Spotlights
Spotlight January 2022: Methods, models, mechanisms and metadata
For the new year, we are presenting no “classic” paper here, but would like to point out an editorial: Methods, Models, Mechanisms and Metadata: Introduction to the Nanotoxicology Collection at F1000 Research. This editorial introduces the F1000Research Nanotoxicology Collection, where best practices can be collected in the form of original research reports, including no-effect studies, […]
Read moreSpotlight April 2023: Recycling rare earths – bacteria assist in the circular economy
Rare earths are important components of wind turbines, catalytic converters, fibre optic cables and plasma screens. Since the 17 metals grouped under this term are indispensable for modern technologies, demand and costs are constantly rising. The occurrence of productive mining sites is limited and the production is often costly and environmentally harmful. The advantages of […]
Read moreSpotlight April 2021: Nanomaterials and Fake News – a commentary based on an example
In February 2021, the article “The invisible killer lurking in our consumer products” appeared, describing nanoparticles as a greater danger than Corona [1]. “The use of nanomaterials” would be “unregulated” and “nanomaterials are so small that they cannot be determined once they are part of a product”. So what is the truth of these statements? […]
Read moreSpotlight July: Plastic Pollution and the Urgent Need for Comprehensive Action
Plastic pollution has become a significant threat to the oceans, biodiversity, and ecosystems worldwide. Despite efforts to reduce plastic consumption, escalating plastic production continues to increase the magnitude of plastic pollution in the environment. In response to this crisis, the UN-Environmental Assembly (Link) adopted a resolution in March 2022 to develop a legally binding treaty […]
Read more