Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?

Home > Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?

In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper.

Groundwater is indispensable for the drinking water supply in many areas of the world. Therefore, contamination of groundwater with pollutants requires purification before drinking water can be produced from it. There are different methods available for such a purification or remediation. The choice of the remediation method is made in such a way that as little damage as possible is caused to the respective ecosystem. In the present study, the in-situ remediation agent Carbo-Iron® was investigated and the benefits compared with possible harmful effects. From existing and newly collected ecotoxicity data in various organisms (water flea, algae, insects, bacteria), non-effect concentrations of 0.1 mg Carbo-Iron® per liter of water were derived. These concentrations were compared with measured and modelled environmental concentrations of Carbo-Iron®, as typically found in groundwater after remediation. For this purpose, a field study was evaluated, which was carried out in an aquifer contaminated with chlorinated hydrocarbons under an old laundry. The comprehensive final evaluation clearly showed that the total environmental risk was significantly reduced by the destruction of the chlorinated hydrocarbons by means of Carbo-Iron®.

This study is thus one of only a few to carry out a comprehensive risk assessment in a nanomaterials use case that involves a release into the environment (here into groundwater). In this case it could be clearly shown that the benefits of the application (the destruction of pollutants) clearly outweigh the risks (effects of Carbo-Iron® on organisms).

Original Publication:

Mirco Weil, Katrin Mackenzie, Kaarina Foit, Dana Kühnel, Wibke Busch, Mirco Bundschuh, Ralf Schulz, Karen Duis (2019) Environmental risk or benefit? Comprehensive risk assessment of groundwater treated with nano Fe0-based Carbo-Iron®. Science of The Total Environment, 677, 156-166, https://doi.org/10.1016/j.scitotenv.2019.04.360

Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?

Weitere Spotlights


Spotlight November 2023: Early Awareness and Action System for Advanced Materials (Early4AdMa)

Spotlight November 2023: Early Awareness and Action System for Advanced Materials (Early4AdMa)

Advanced materials hold immense potential to address global challenges such as environmental degradation, transformation of the energy sector, and development towards circularity. To harness their benefits while ensuring safety and sustainability, regulatory bodies, scientific communities, and industries have recognized the need for proactive approaches. The “Early4AdMa” system is a pre-regulatory risk governance tool for advanced […]

Read more

Spotlight August 2021: Towards FAIR nanosafety data

Spotlight August 2021: Towards FAIR nanosafety data

In August we would like to present a paper on FAIR data. The paper published in Nature Nanotechnology in June 2021 summarises the challenges and provides recommendations for the efficient reuse of nanosafety data in line with the recently established FAIR guiding principles: findable, accessible, interoperable and reusable. This article summarises the know-how on the […]

Read more

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]

Read more

Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and […]

Read more

Skip to content