
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm Change in Material’s Development” by J. Kimmig, from the Schubert group in Jena, et. al.
This paper explores the current developments in automation and digitalisation in materials science and assesses the challenges in materials preparation and characterisation, as well as data management, data analysis, experiment design and manufacturing. The publication begins with a clarification of common terms from the field of digitalisation and explains the importance of applying FAIR principles in dealing with data from the very beginning. Using examples of digital solutions, effective strategies for achieving digital materials science are presented. The ways in which these strategies enable efficiency and innovation are outlined consistently throughout the paper and provide a clear picture of the benefits in each case.
Although the safety of materials and the associated research is not part of the review, it is fully plausible that the mentioned procedures and consequences are also crucial for safety research, for example: The mentioned concept of storing “negative” data can be directly transferred to safety research.
Original Publication:
Kimmig, J. et al. (2021). Digital Transformation in Materials Science: A Paradigm Change in Material’s Development. Advanced Materials, 33(8), 2004940. DOI: 10.1002/adma.202004940

Weitere Spotlights
Spotlight April 2023: Recycling rare earths – bacteria assist in the circular economy
Rare earths are important components of wind turbines, catalytic converters, fibre optic cables and plasma screens. Since the 17 metals grouped under this term are indispensable for modern technologies, demand and costs are constantly rising. The occurrence of productive mining sites is limited and the production is often costly and environmentally harmful. The advantages of […]
Read moreSpotlight September 2023: Fishing for raw materials with proteins
The so-called rare earth elements such as neodymium, dysprosium or cerium are elements that are of great importance for the energy transition; among others they serve as components of magnets in generators for electric power generation, act as luminescent materials in energy-saving lamps or as part of the car exhaust catalytic converter. The global production […]
Read moreSpotlight October 2020: Nanosafety – Topic of the Future
Research on nanosafety is a driver of innovation as the spotlight in July has demonstrated. But furthermore, this research field is built on routine as well if researchers look for the “needle in the haystack”. In many areas the safety research initiates the development of new methods, e.g. for the determination of nanoparticles within exposed organisms via […]
Read moreSpotlight February 2022: Probabilistic risk assessment – the keystone for the future of toxicology
The basics of toxicology are constantly being reconsidered, and the approach to risk assessment is therefore constantly being put to the test, because, as William Osler is cited in this publication, “Medicine (toxicology) is a science of uncertainty and an art of probability“. In this recent paper, the team around Thomas Hartung (Johns-Hopkins University/University of […]
Read more