Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm Change in Material’s Development” by J. Kimmig, from the Schubert group in Jena, et. al.
This paper explores the current developments in automation and digitalisation in materials science and assesses the challenges in materials preparation and characterisation, as well as data management, data analysis, experiment design and manufacturing. The publication begins with a clarification of common terms from the field of digitalisation and explains the importance of applying FAIR principles in dealing with data from the very beginning. Using examples of digital solutions, effective strategies for achieving digital materials science are presented. The ways in which these strategies enable efficiency and innovation are outlined consistently throughout the paper and provide a clear picture of the benefits in each case.
Although the safety of materials and the associated research is not part of the review, it is fully plausible that the mentioned procedures and consequences are also crucial for safety research, for example: The mentioned concept of storing “negative” data can be directly transferred to safety research.
Original Publication:
Kimmig, J. et al. (2021). Digital Transformation in Materials Science: A Paradigm Change in Material’s Development. Advanced Materials, 33(8), 2004940. DOI: 10.1002/adma.202004940
Weitere Spotlights
Spotlight September 2023: Fishing for raw materials with proteins
The so-called rare earth elements such as neodymium, dysprosium or cerium are elements that are of great importance for the energy transition; among others they serve as components of magnets in generators for electric power generation, act as luminescent materials in energy-saving lamps or as part of the car exhaust catalytic converter. The global production […]
Read moreSpotlight August 2020: The nanoGRAVUR Grouping approach
In August, we would like to present a paper of the German BMBF project nanoGRAVUR. nanoGRAVUR dealt from 2015-2018 with the grouping of nanostructured materials with regard to occupational safety, consumer and environmental protection and risk mitigation. The approach is now described by the project partners in this paper.Due to the variety of synthetic nanomaterials and the numerous modifications (differences in size, shape, chemical composition and surface functionalization), the effort required to investigate effects and behaviour within the framework of regulatory requirements is…
Read moreSpotlight October 2022: The titanium dioxide debate – why the current ECHA and EFSA hazard classification should be questioned
Due to various reports and scientific studies, titanium dioxide (TiO2)was also banned in Europe this year (2022) for use as a food additive with the indication that it could possibly be carcinogenic to humans. Although no case of tumour induction in humans has been reported since the use of this material in micro but also […]
Read moreSpotlight July 2022: New definition on nanomaterials published
The European Union has published a new definition for nanomaterials as of June 2022. It is recommended that this be used as a basis for future legislation. The new documents can be found on the EC website. In the new “nanodefinition”, the essential components such as the origin or the size range of the particles […]
Read more