Science has always taken nature as a model and imitated it. If you look at the field of photonics, i.e. the use of optical technologies for information processing, transmission or storage, the colorful examples in the animal and plant world are perfect basic drawers for technical applications.
While colors in nature are used either for communication, mating, camouflage, or as a defense mechanism, science is trying to translate them into engineering applications.
In the review “Photonics in nature and bioinspired designs: sustainable approaches for a colorful world” published by Raquel Vaz, Manuela F. Frasco and M. Goreti F. Sales, the authors describe the variety of colors in nature and on which physical phenomena, for example, the color change of chameleons is based. They show how science is using the underlying mechanisms to develop novel materials and applications from photonic crystals, colored biomaterials or optical sensors.
The colors found in nature come from either physical processes such as reflection or diffraction or chemical processes such as bioluminescence. The review article focuses on physical processes in which a certain structure that interacts with light is decisive for the colors we perceive. For example, the color of butterflies’ wings is caused by the nanostructure of chitin. Some fruits of trees are blue because the structure of cellulose reflects only blue light.
Derived from nature, numerous materials are suitable as photonic biomaterials. In general, the color or a change in color indicates a change in the environment of the material and can therefore be used as an indicator that is easily perceived by humans. Applications of such “indicators” include pharmaceuticals, where the release of drugs from a capsule can be monitored by a color change.
In the field of sensor technology, a change in color can be used to indicate a change in temperature or pH value. So-called “smart” plastic materials are used for this purpose, among others. They are able to detect changes in pH and temperature simultaneously. Other plastic materials can detect heavy metals or pollutants or are able to indicate the presence of biological warfare agents.
Many photonic applications are currently under development. For example, wearable photonic devices may be applied in determining health data such as measuring heartbeat or respiration. Other future application areas include better treatment of cancer or faster self-healing for tissue damage.
The field of photonics shows promising approaches for new materials and applications that cannot be realized with common dyes. Thus, photonics is a field of research from which many new developments for the diagnosis of diseases, the encapsulation of drugs or for the monitoring of chemicals in the environment can be expected in the future.
Original publication:
Vaz, Raquel and Frasco, Manuela F. and Sales, M. Goreti F. (2020). Photonics in nature and bioinspired designs: sustainable approaches for a colourful world. Nanoscale Adv.,2, 5106-5129.
This article is part of the themed collections: US National Nanotechnology Day, 2022.
Weitere Spotlights
Spotlight November 2021: Safe Materials from Scratch – Safe-by-Design in Materials Research
Advances in the field of materials science continue to amaze us with nanoscale materials with extraordinary chemical, electrical, optical, and numerous other properties. However, some nanoscale materials have different toxicological profiles compared to the same bulk material. Since safety issues are usually addressed just before launching a product into the market, safety issues may be […]
Read moreSpotlight July 2022: New definition on nanomaterials published
The European Union has published a new definition for nanomaterials as of June 2022. It is recommended that this be used as a basis for future legislation. The new documents can be found on the EC website. In the new “nanodefinition”, the essential components such as the origin or the size range of the particles […]
Read moreSpotlight January 2023: Special issue on Methods and Protocols in Nanotoxicology published
In the first Spotlight of the new year, we present a special issue on methods and protocols in nanotoxicology published in the journal Frontiers in Toxicology. There are still too few harmonized protocols accepted by the scientific community. To improve this situation, project activities are started and special issues of journals like this one are […]
Read moreSpotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?
In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper. Groundwater is indispensable for the […]
Read more