Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Home > Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for local public transport as well as other vehicles in an environmentally and climate-friendly way, or it can be converted back into electricity. However, the production of hydrogen using electricity has so far been relatively inefficient, so catalysts are being feverishly sought to help improve this process.

One possibility now seems to have been discovered in a novel catalyst. Korean researchers have synthesized this catalyst from the three known metals nickel, palladium and platinum, which enables the production of hydrogen about 8 times better than previous platinum-carbon catalysts. This high activity of the catalyst is possible due to the very small subunits in nanometer size. Nickel/platinum and palladium/platinum interfaces are created, which are arranged in a specific order to each other and thus considerably facilitate the processes of hydrogen production.

Such and other expected developments in catalyst chemistry will help secure future energy supplies and contribute to a sustainable and environmentally friendly energy supply.

 

Original publication:

Gu, B.S., Dutta, S., Hong, Y.R., Ngome Okello, O.F., Im, H., Ahn, S., Choi, S.Y., Woo Han, J., Ryu, S., and Lee, I.S. (2023). Angew Chem Int Ed Engl 62, e202307816.

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Weitere Spotlights


Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]

Read more

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

The COVID-19 pandemic induces very different reactions of people on the internet (https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm) and in the social networks. Without following the conspiracy theories as “5G nanochip hidden in COVID vaccines” some news as “COVID vaccines induce allergic reactions” should be scientifically recognised. The picture from the 5G-nanochip whose plan goes viral on the internet is […]

Read more

Spotlight January 2022: Methods, models, mechanisms and metadata

Spotlight January 2022: Methods, models, mechanisms and metadata

For the new year, we are presenting no “classic” paper here, but would like to point out an editorial: Methods, Models, Mechanisms and Metadata: Introduction to the Nanotoxicology Collection at F1000 Research. This editorial introduces the F1000Research Nanotoxicology Collection, where best practices can be collected in the form of original research reports, including no-effect studies, […]

Read more

Spotlight August 2020: The nanoGRAVUR Grouping approach

Spotlight August 2020: The nanoGRAVUR Grouping approach

In August, we would like to present a paper of the German BMBF project nanoGRAVUR. nanoGRAVUR dealt from 2015-2018 with the grouping of nanostructured materials with regard to occupational safety, consumer and environmental protection and risk mitigation. The approach is now described by the project partners in this paper.Due to the variety of synthetic nanomaterials and the numerous modifications (differences in size, shape, chemical composition and surface functionalization), the effort required to investigate effects and behaviour within the framework of regulatory requirements is…

Read more

Skip to content