Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Home > Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for local public transport as well as other vehicles in an environmentally and climate-friendly way, or it can be converted back into electricity. However, the production of hydrogen using electricity has so far been relatively inefficient, so catalysts are being feverishly sought to help improve this process.

One possibility now seems to have been discovered in a novel catalyst. Korean researchers have synthesized this catalyst from the three known metals nickel, palladium and platinum, which enables the production of hydrogen about 8 times better than previous platinum-carbon catalysts. This high activity of the catalyst is possible due to the very small subunits in nanometer size. Nickel/platinum and palladium/platinum interfaces are created, which are arranged in a specific order to each other and thus considerably facilitate the processes of hydrogen production.

Such and other expected developments in catalyst chemistry will help secure future energy supplies and contribute to a sustainable and environmentally friendly energy supply.

 

Original publication:

Gu, B.S., Dutta, S., Hong, Y.R., Ngome Okello, O.F., Im, H., Ahn, S., Choi, S.Y., Woo Han, J., Ryu, S., and Lee, I.S. (2023). Angew Chem Int Ed Engl 62, e202307816.

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Weitere Spotlights


Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]

Read more

Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.

Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.

Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). […]

Read more

Spotlight March 2021: Is Nanotechnology the Swiss Army Knife against Future Pandemics?

Spotlight March 2021: Is Nanotechnology the Swiss Army Knife against Future Pandemics?

The COVID 19 outbreak has led to a fundamental rethinking of existing approaches to diagnosis, treatment, and prevention methods. The need for better and more efficient concepts is global and urgent. Nanotechnology has long been at the forefront of innovation and has led to advances in many different disciplines. Could this interdisciplinary field help develop […]

Read more

Spotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish

Spotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish

Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]

Read more

Skip to content