>
Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals
Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for local public transport as well as other vehicles in an environmentally and climate-friendly way, or it can be converted back into electricity. However, the production of hydrogen using electricity has so far been relatively inefficient, so catalysts are being feverishly sought to help improve this process.
One possibility now seems to have been discovered in a novel catalyst. Korean researchers have synthesized this catalyst from the three known metals nickel, palladium and platinum, which enables the production of hydrogen about 8 times better than previous platinum-carbon catalysts. This high activity of the catalyst is possible due to the very small subunits in nanometer size. Nickel/platinum and palladium/platinum interfaces are created, which are arranged in a specific order to each other and thus considerably facilitate the processes of hydrogen production.
Such and other expected developments in catalyst chemistry will help secure future energy supplies and contribute to a sustainable and environmentally friendly energy supply.
Original publication:
Gu, B.S., Dutta, S., Hong, Y.R., Ngome Okello, O.F., Im, H., Ahn, S., Choi, S.Y., Woo Han, J., Ryu, S., and Lee, I.S. (2023). Angew Chem Int Ed Engl 62, e202307816.
Weitere Spotlights
Spotlight September 2023: Fishing for raw materials with proteins
The so-called rare earth elements such as neodymium, dysprosium or cerium are elements that are of great importance for the energy transition; among others they serve as components of magnets in generators for electric power generation, act as luminescent materials in energy-saving lamps or as part of the car exhaust catalytic converter. The global production […]
Read moreSpotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish
Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]
Read moreSpotlight March 2022: Safe Materials from Scratch – Safe-by-Design-Concept in action
In recent decades, German research on nanomaterials and new, innovative materials has been widely expanded by material safety aspects. European initiatives also pay significant attention to this: both the European Union (EU) Green Deal, and the Chemicals Strategy for Sustainability (CSS) aim to create a sustainable, climate-neutral economy with sustainable and safe chemicals and products, […]
Read moreSpotlight January 2022: Methods, models, mechanisms and metadata
For the new year, we are presenting no “classic” paper here, but would like to point out an editorial: Methods, Models, Mechanisms and Metadata: Introduction to the Nanotoxicology Collection at F1000 Research. This editorial introduces the F1000Research Nanotoxicology Collection, where best practices can be collected in the form of original research reports, including no-effect studies, […]
Read more


