
Advances in the field of materials science continue to amaze us with nanoscale materials with extraordinary chemical, electrical, optical, and numerous other properties. However, some nanoscale materials have different toxicological profiles compared to the same bulk material. Since safety issues are usually addressed just before launching a product into the market, safety issues may be discovered too late, thus resulting in a lot of wasted effort. This month we want to highlight a two-part research paper. This paper proposes a Safe-by-Design (SbD) strategy to link materials functionality with environmental and human safety allowing innovators to anticipate potential safety issues in the early stages of the innovation process. Therefore, unleashing the full economic potential of innovative nanoscale materials.
The SbD strategy aims to reduce uncertainties in materials research and development and, at the same time, raise human and environmental safety. The proposed strategy ensures the collection of safety-related data throughout the whole development process complying with regulatory requirements and ensuring a transparent communication of risks from early in the innovation process onwards. The authors adapt the Cooper’s stage-gate-model – a project management technique usually used for product development – by including new decisive parameters for the decision-making during the innovation process. Moreover, the authors offer a comprehensive overview of the information needed to balance safety and functionality and illustrate the applicability of the SbD strategy using a case study: Carbon nanotube-based transparent conductive films. Whereas the second part of the paper concentrates on the applicability of SbD, the first part offers a set of questions to identify which type of information is required to assess and reduce environmental and human risks. These questions allow innovators to find, prioritize, and choose safer alternatives.
Original publications:
Tavernaro, I., Dekkers, S., Soeteman-Hernández, L. G., Herbeck-Engel, P., Noorlander, C., and Kraegeloh, A. 2021. Safe-by-design part II: a strategy for balancing safety and functionality in the different stages of the innovation process. NanoImpact, 24, 100354. DOI: 10.1016/j.impact.2021.100354
Dekkers, S., Wijnhoven, S. W., Braakhuis, H. M., Soeteman-Hernandez, L. G., Sips, A. J., Tavernaro, I., Kraegeloh, A., and Noorlander, C. W. 2020. Safe-by-Design part I: Proposal for nanospecific human health safety aspects needed along the innovation process. NanoImpact, 18, 100227. DOI: 10.1016/j.impact.2020.100227

Weitere Spotlights
Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?
In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper. Groundwater is indispensable for the […]
Read moreSpotlight January 2021: Nanoplastics challenge – How to improve tracking of nanopolystyrene distribution in the environment.
In January, we present a paper published in the Nature Journal communications materials. The article focuses on the development of a new detection method of nanopolystyrene. The method not only makes it possible to detect nanoplastics in the environment for the first time, but also to determine their accumulation in plants and animals. Nanoplastics, which […]
Read moreSpotlight August 2021: Towards FAIR nanosafety data
In August we would like to present a paper on FAIR data. The paper published in Nature Nanotechnology in June 2021 summarises the challenges and provides recommendations for the efficient reuse of nanosafety data in line with the recently established FAIR guiding principles: findable, accessible, interoperable and reusable. This article summarises the know-how on the […]
Read moreSpotlight March 2023: How can photovoltaics be made safe and sustainable?
Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, […]
Read more