>
Spotlight April 2022: A new risk assessment of nanomaterials in 3D printing is needed
The use of nanomaterials in 3D printing has great potential. Due to the properties of nanoscale materials, many requirements can be implemented in 3D printing. However, these unique properties based on the size of the particles also lead to the need for new risk assessments. This is because if the nanoparticles are released in the printing process or subsequently from the finished product, they could pose a risk to humans and the environment. Future risk assessments of nanomaterials will therefore need to address not only the “non-nano” properties of the substances used, but also evaluate their size-based properties.
The review article by Taylor et al. presents the current state of the art regarding the use or emergence of nanomaterials in 3D printing. However, it also addresses the current safety precautions and regulations that must be followed when dealing with nanoparticles in 3D printing in various countries.
3D printing is used in many industries, including automotive and aircraft manufacturing. Alumina or zirconia are the most commonly used nanomaterials. The greatest risk to humans comes from nanoparticles that are released and subsequently inhaled or absorbed through the skin (see also “How can innovative materials (e.g.nanomaterials) enter the body or the environment?“). These are embedded in polymers (e.g., polyurethanes), metals (e.g., aluminum oxide), or biological materials (e.g., cellulose). Therefore, the nanomaterials are mainly released embedded in these carrier materials, but formation during the printing process for evaporation processes is also possible. So far, it is difficult to track the release of individual nanoparticles over the life cycle.
Future nanospecific regulations must therefore include analyses of the life cycle, the release potential, and an assessment of the hazard potential for humans and the environment. However, due to a lack of data on the number and form of nanomaterials released (free or bound) in 3D printing, many uncertainties remain about the exact risk. However, as knowledge about this will increase, regulations (e.g., on occupational health and safety) will also need to be more specific in the future.
Finally, the authors point out that early consultation of 3D printer manufacturers with authorities can lead to future regulations both meeting safety concerns and enabling practical implementation.
Original Publication:
Alicia A. Taylor, Elaine L. Freeman, Merel J.C. van der Ploeg, Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. Ecotoxicology and Environmental Safety 2021, 207, 111458.
Weitere Spotlights
Spotlight March 2021: Is Nanotechnology the Swiss Army Knife against Future Pandemics?
The COVID 19 outbreak has led to a fundamental rethinking of existing approaches to diagnosis, treatment, and prevention methods. The need for better and more efficient concepts is global and urgent. Nanotechnology has long been at the forefront of innovation and has led to advances in many different disciplines. Could this interdisciplinary field help develop […]
Read moreSpotlight October 2023: Improved hydrogen production through novel catalyst made of three metals
Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]
Read moreSpotlight November 2023: Early Awareness and Action System for Advanced Materials (Early4AdMa)
Advanced materials hold immense potential to address global challenges such as environmental degradation, transformation of the energy sector, and development towards circularity. To harness their benefits while ensuring safety and sustainability, regulatory bodies, scientific communities, and industries have recognized the need for proactive approaches. The “Early4AdMa” system is a pre-regulatory risk governance tool for advanced […]
Read moreSpotlight March 2023: How can photovoltaics be made safe and sustainable?
Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, […]
Read more


