>
Spotlight April 2022: A new risk assessment of nanomaterials in 3D printing is needed
The use of nanomaterials in 3D printing has great potential. Due to the properties of nanoscale materials, many requirements can be implemented in 3D printing. However, these unique properties based on the size of the particles also lead to the need for new risk assessments. This is because if the nanoparticles are released in the printing process or subsequently from the finished product, they could pose a risk to humans and the environment. Future risk assessments of nanomaterials will therefore need to address not only the “non-nano” properties of the substances used, but also evaluate their size-based properties.
The review article by Taylor et al. presents the current state of the art regarding the use or emergence of nanomaterials in 3D printing. However, it also addresses the current safety precautions and regulations that must be followed when dealing with nanoparticles in 3D printing in various countries.
3D printing is used in many industries, including automotive and aircraft manufacturing. Alumina or zirconia are the most commonly used nanomaterials. The greatest risk to humans comes from nanoparticles that are released and subsequently inhaled or absorbed through the skin (see also “How can innovative materials (e.g.nanomaterials) enter the body or the environment?“). These are embedded in polymers (e.g., polyurethanes), metals (e.g., aluminum oxide), or biological materials (e.g., cellulose). Therefore, the nanomaterials are mainly released embedded in these carrier materials, but formation during the printing process for evaporation processes is also possible. So far, it is difficult to track the release of individual nanoparticles over the life cycle.
Future nanospecific regulations must therefore include analyses of the life cycle, the release potential, and an assessment of the hazard potential for humans and the environment. However, due to a lack of data on the number and form of nanomaterials released (free or bound) in 3D printing, many uncertainties remain about the exact risk. However, as knowledge about this will increase, regulations (e.g., on occupational health and safety) will also need to be more specific in the future.
Finally, the authors point out that early consultation of 3D printer manufacturers with authorities can lead to future regulations both meeting safety concerns and enabling practical implementation.
Original Publication:
Alicia A. Taylor, Elaine L. Freeman, Merel J.C. van der Ploeg, Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. Ecotoxicology and Environmental Safety 2021, 207, 111458.
Weitere Spotlights
Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?
In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper. Groundwater is indispensable for the […]
Read moreSpotlight July: Plastic Pollution and the Urgent Need for Comprehensive Action
Plastic pollution has become a significant threat to the oceans, biodiversity, and ecosystems worldwide. Despite efforts to reduce plastic consumption, escalating plastic production continues to increase the magnitude of plastic pollution in the environment. In response to this crisis, the UN-Environmental Assembly (Link) adopted a resolution in March 2022 to develop a legally binding treaty […]
Read moreSpotlight April 2023: Recycling rare earths – bacteria assist in the circular economy
Rare earths are important components of wind turbines, catalytic converters, fibre optic cables and plasma screens. Since the 17 metals grouped under this term are indispensable for modern technologies, demand and costs are constantly rising. The occurrence of productive mining sites is limited and the production is often costly and environmentally harmful. The advantages of […]
Read moreSpotlight July 2021: The Path to Digital Material Research – It is never too late to start
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm […]
Read more


