Spotlight December 2021: Silica nanoparticles improve plant disease resistance

Home > Spotlight December 2021: Silica nanoparticles improve plant disease resistance

The resistance of plants to various pathogens is often increased in agriculture with various chemicals (“fertilizers”). A new direction is being taken with the use of nanoparticles. These can be sprayed on the plants. In the present study, the model plant Arabidopsis was used to investigate whether silicon dioxide nanoparticles (SiO2) can increase resistance to bacteria. For this purpose, plants were pretreated with silicon dioxide nanoparticles and then infected with bacteria. The plant hormone salicylic acid plays a major role in the defense against pathogens in plants. It is also used in human medicine as an antipyretic drug. Therefore, the content of salicylic acid in Arabidopsis leaves provided information about the protective function of silicon dioxide nanoparticles.
First of all, an uptake of the silicon dioxide nanoparticles via the pores of the leaves could be proven. Subsequently, a slow release of (ortho)silicic acid [Si(OH)4] occurs inside the leaves. (Ortho)silicic acid finally leads to the increased formation of salicylic acid by the plant, to which the actual protection against bacterial infections can be attributed. This shows that the administration of silicon dioxide nanoparticles was safer for the plant than the direct administration of (ortho)silicic acid. This is because the direct application of (ortho)silicic acid resulted in cellular stress responses, which were also visible by  yellow leaves. In contrast, silicon dioxide nanoparticles in high concentrations showed no toxic effect, because the release of the effective (ortho)silicic acid is slow (depot effect). Only very small amounts of nanoparticulate silica are needed to exert a protective effect on the plant, making it a more cost-effective alternative comparing to other substances.
The authors caution that despite the beneficial properties of silicon dioxide nanoparticles for plant health, the long-term effects on farm workers, soil microorganisms and bees also need to be studied. Previous results with nematodes indicate a 36-fold lower toxicity of the nanoparticles, compared to liquid (ortho)silica. Thus, silica nanoparticles may be a safe and sustainable chemical for protection against plant diseases.

Original publication:

El-Shetehy M., Moradi A., Maceroni M., et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol. 2021;16(3):344-353. doi:10.1038/s41565-020-00812-0

More info on silica nanoparticles in our material text.

Spotlight December 2021: Silica nanoparticles improve plant disease resistance

Weitere Spotlights


Spotlight May 2023: Dual energy – edible batteries

Spotlight May 2023: Dual energy – edible batteries

An Italian research group reports on edible batteries that supply electric current and can be digested as food, thus providing energy a second time. What sounds funny at first has a serious background, because in medicine, power sources are needed that could be transported through the digestive tract and possibly remain in the body unintentionally, […]

Read more

Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

Spotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?

The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]

Read more

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

The COVID-19 pandemic induces very different reactions of people on the internet (https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm) and in the social networks. Without following the conspiracy theories as “5G nanochip hidden in COVID vaccines” some news as “COVID vaccines induce allergic reactions” should be scientifically recognised. The picture from the 5G-nanochip whose plan goes viral on the internet is […]

Read more

Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

The application of so-called “nanopesticides” (see also cross-sectional text Nanomaterials in plant protection products) is said to have two basic advantages: a smaller amount of pesticide is needed for the same agricultural area and the efficacy is improved. This is necessary to grow enough food for a still growing world population. However, this could also […]

Read more

Skip to content