>
Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.
Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). However, one process that occurs not visible to the naked eye is the decay of large pieces of plastic into smaller fragments (microplastics), which in turn decompose into even smaller particles, called Nanoplastic (more information about nanoplastic in the environment).
How exactly the process of decomposition due to weathering occurs and what exactly happens to nanoplastic particles was investigated in the paper presented here. The starting point for the investigation were plastic pellets in the medium size range of 100- 200 µm, which were exposed to laboratory weathering by water and solar radiation. In this manner, natural weathering by rain and solar radiation in Central Europe was imitated over a period of 1.5 years. The degradation could be divided into 3 main stages. First, the large fragments were smoothed by surface abrasion over a period of up to 17 days and smaller fragments detached (stage 1). After a period of at least 58 days, cracks formed on the plastic surface (stage 2). Finally, the cracks lead to the detachment of smaller particles (stage 3). Up to 14,000 nano- and microplastic particles could form from one original particle. The nanoplastic particles subsequently form larger agglomerates with microplastic particles. This could explain why individual nanoplastic particles are so difficult to detect in the environment. Environmental organisms will thus be exposed to nanoplastic and microplastic particles simultaneously. At the same time, nanoplastic particles bound to natural particles may also enter the food chain.
The experiments on the laboratory weathering of larger pieces of plastic into nano- and microplastic particles provide important insights into the environmental behavior of plastic. They also showed that there are different decomposition processes for different polymers.
Original Publication:
Menzel T., Meides N., Mauel A., et al. Degradation of low-density polyethylene to nanoplastic particles by accelerated weathering,
Science of The Total Environment 2022; 826 (154035). https://doi.org/10.1016/j.scitotenv.2022.154035
Weitere Spotlights
Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process
Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and […]
Read moreSpotlight December 2022: Fighting tumors with micro robots
When we, the DaNa team as operators of the website nanopartikel.info, write about nanobots, i.e. nanometre-sized machines, we point out that these machines belong to science fiction, may even remain a utopia – i.e. never realisable. On the significantly larger micro-scale, however, small machines are conceivable that could help in the therapy of diseases, e.g. […]
Read moreSpotlight May 2023: Dual energy – edible batteries
An Italian research group reports on edible batteries that supply electric current and can be digested as food, thus providing energy a second time. What sounds funny at first has a serious background, because in medicine, power sources are needed that could be transported through the digestive tract and possibly remain in the body unintentionally, […]
Read moreSpotlight September 2023: Fishing for raw materials with proteins
The so-called rare earth elements such as neodymium, dysprosium or cerium are elements that are of great importance for the energy transition; among others they serve as components of magnets in generators for electric power generation, act as luminescent materials in energy-saving lamps or as part of the car exhaust catalytic converter. The global production […]
Read more


