>
Spotlight November 2022: Photonics in nature and bioinspired designs
Science has always taken nature as a model and imitated it. If you look at the field of photonics, i.e. the use of optical technologies for information processing, transmission or storage, the colorful examples in the animal and plant world are perfect basic drawers for technical applications.
While colors in nature are used either for communication, mating, camouflage, or as a defense mechanism, science is trying to translate them into engineering applications.
In the review “Photonics in nature and bioinspired designs: sustainable approaches for a colorful world” published by Raquel Vaz, Manuela F. Frasco and M. Goreti F. Sales, the authors describe the variety of colors in nature and on which physical phenomena, for example, the color change of chameleons is based. They show how science is using the underlying mechanisms to develop novel materials and applications from photonic crystals, colored biomaterials or optical sensors.
The colors found in nature come from either physical processes such as reflection or diffraction or chemical processes such as bioluminescence. The review article focuses on physical processes in which a certain structure that interacts with light is decisive for the colors we perceive. For example, the color of butterflies’ wings is caused by the nanostructure of chitin. Some fruits of trees are blue because the structure of cellulose reflects only blue light.
Derived from nature, numerous materials are suitable as photonic biomaterials. In general, the color or a change in color indicates a change in the environment of the material and can therefore be used as an indicator that is easily perceived by humans. Applications of such “indicators” include pharmaceuticals, where the release of drugs from a capsule can be monitored by a color change.
In the field of sensor technology, a change in color can be used to indicate a change in temperature or pH value. So-called “smart” plastic materials are used for this purpose, among others. They are able to detect changes in pH and temperature simultaneously. Other plastic materials can detect heavy metals or pollutants or are able to indicate the presence of biological warfare agents.
Many photonic applications are currently under development. For example, wearable photonic devices may be applied in determining health data such as measuring heartbeat or respiration. Other future application areas include better treatment of cancer or faster self-healing for tissue damage.
The field of photonics shows promising approaches for new materials and applications that cannot be realized with common dyes. Thus, photonics is a field of research from which many new developments for the diagnosis of diseases, the encapsulation of drugs or for the monitoring of chemicals in the environment can be expected in the future.
Original publication:
Vaz, Raquel and Frasco, Manuela F. and Sales, M. Goreti F. (2020). Photonics in nature and bioinspired designs: sustainable approaches for a colourful world. Nanoscale Adv.,2, 5106-5129.
This article is part of the themed collections: US National Nanotechnology Day, 2022.
Weitere Spotlights
Spotlight November 2020: Nanotechnology in the public perception
In November, we would like to draw your attention to a publication that examines public perception of the safety of nanomaterials in Austria.It shows, that although there is generally a rather positive attitude towards nanomaterials, there are different opinions on safety issues from different social groups. Further clarification seems necessary. Despite the widespread use of […]
Read moreSpotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?
The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]
Read moreSpotlight April 2022: A new risk assessment of nanomaterials in 3D printing is needed
The use of nanomaterials in 3D printing has great potential. Due to the properties of nanoscale materials, many requirements can be implemented in 3D printing. However, these unique properties based on the size of the particles also lead to the need for new risk assessments. This is because if the nanoparticles are released in the […]
Read moreSpotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?
The COVID-19 pandemic induces very different reactions of people on the internet (https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm) and in the social networks. Without following the conspiracy theories as “5G nanochip hidden in COVID vaccines” some news as “COVID vaccines induce allergic reactions” should be scientifically recognised. The picture from the 5G-nanochip whose plan goes viral on the internet is […]
Read more


