The use of nanomaterials in 3D printing has great potential. Due to the properties of nanoscale materials, many requirements can be implemented in 3D printing. However, these unique properties based on the size of the particles also lead to the need for new risk assessments. This is because if the nanoparticles are released in the printing process or subsequently from the finished product, they could pose a risk to humans and the environment. Future risk assessments of nanomaterials will therefore need to address not only the “non-nano” properties of the substances used, but also evaluate their size-based properties.
The review article by Taylor et al. presents the current state of the art regarding the use or emergence of nanomaterials in 3D printing. However, it also addresses the current safety precautions and regulations that must be followed when dealing with nanoparticles in 3D printing in various countries.
3D printing is used in many industries, including automotive and aircraft manufacturing. Alumina or zirconia are the most commonly used nanomaterials. The greatest risk to humans comes from nanoparticles that are released and subsequently inhaled or absorbed through the skin (see also “How can innovative materials (e.g.nanomaterials) enter the body or the environment?“). These are embedded in polymers (e.g., polyurethanes), metals (e.g., aluminum oxide), or biological materials (e.g., cellulose). Therefore, the nanomaterials are mainly released embedded in these carrier materials, but formation during the printing process for evaporation processes is also possible. So far, it is difficult to track the release of individual nanoparticles over the life cycle.
Future nanospecific regulations must therefore include analyses of the life cycle, the release potential, and an assessment of the hazard potential for humans and the environment. However, due to a lack of data on the number and form of nanomaterials released (free or bound) in 3D printing, many uncertainties remain about the exact risk. However, as knowledge about this will increase, regulations (e.g., on occupational health and safety) will also need to be more specific in the future.
Finally, the authors point out that early consultation of 3D printer manufacturers with authorities can lead to future regulations both meeting safety concerns and enabling practical implementation.
Original Publication:
Alicia A. Taylor, Elaine L. Freeman, Merel J.C. van der Ploeg, Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing. Ecotoxicology and Environmental Safety 2021, 207, 111458.
Weitere Spotlights
Spotlight September: A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes
This paper describes a method for automatically assessing the quality and completeness of nanosafety data for the purpose of risk assessment. Steps to develop the methodology for assessing data completeness and the methodology for assessing quality are presented. The methodology is tailored to physicochemical and hazard (meta) data, but can also be configured with appropriate […]
Read moreSpotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?
The COVID-19 pandemic induces very different reactions of people on the internet (https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm) and in the social networks. Without following the conspiracy theories as “5G nanochip hidden in COVID vaccines” some news as “COVID vaccines induce allergic reactions” should be scientifically recognised. The picture from the 5G-nanochip whose plan goes viral on the internet is […]
Read moreSpotlight June 2021: Endotoxin – the reason for false-positive toxicity testing for advanced materials?
Advanced materials, but also nanomaterials are closely examined to determine whether they trigger biological effects that could be harmful to humans and the environment before they are used in products. This also includes such materials as titanium dioxide, which has been used in a wide variety of products for more than 50 years. A particularly […]
Read moreSpotlight July 2021: The Path to Digital Material Research – It is never too late to start
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm […]
Read more