Spotlight June 2021: Endotoxin – the reason for false-positive toxicity testing for advanced materials? 

Home > Spotlight June 2021: Endotoxin – the reason for false-positive toxicity testing for advanced materials? 

Advanced materials, but also nanomaterials are closely examined to determine whether they trigger biological effects that could be harmful to humans and the environment before they are used in products. This also includes such materials as titanium dioxide, which has been used in a wide variety of products for more than 50 years. A particularly important biological reaction to “foreign substances” in humans and animals is the inflammatory response, as this represents a defence mechanism in which the body defends itself with various reactions: redness, heating (fever), swelling and pain are the first signs and possibly lead to a functional impairment of the organ that is affected. As a result, this reaction is also particularly frequently studied in toxicology laboratories and almost as frequently misinterpreted.

But what are the reasons for the frequently false-positive results, e. g. with gold particles or the titanium dioxide particles mentioned above? It has long been known that a bacterial cell component is responsible for such false determinations. This is because the so-called “endotoxin” or lipopolysaccharide (LPS) is found everywhere in our environment, even without bacteria, and particularly likes to bind to small particles, such as nanoparticles [1, 2]. This endotoxin then triggers the defence reaction without the material itself having to contribute anything.

In their recent review article, the Italian/Spanish group draws attention to the fact that before measuring an inflammation-inducing effect of materials, it is essential to examine the material to determine whether it contains bacterial contaminants (endotoxin) [Mangini et al., 2021]. And in addition, they indicate that the selection of the appropriate determination method is also important, since the nanoparticles can interact with the test methods, causing additional errors that can lead to false-positive or even false-negative evaluation of the results. However, from a regulatory point of view there is no rule (except for medical applications) that requires the detection or absence of endotoxins when it comes to the toxicological evaluation of advanced materials. Thus, it can be assumed that many of these materials are contaminated with endotoxin and therefore the statements about their inflammatory capacity may be incorrect. The authors therefore present a decision tree that should be applied before any testing of nanomaterials or advanced materials to avoid exactly these mistakes. On the one hand, the question of whether endotoxin is present in the samples must be answered, and on the other hand, it must also be considered whether the appropriate test has been selected that should be used for the material in question.

The DaNa project also evaluates the literature on toxicity according to this criterion, among others, and has included the detection of endotoxin into the catalogue of evaluation points (see also https://nanopartikel.info/en/knowledge/literature-criteria-checklist/).

 

Original Publication:

Mangini, M et al. (2021). Interaction of nanoparticles with endotoxin Importance in nanosafety testing and exploitation for endotoxin binding. Nanotoxicology, 15(4): 558-576.

 

Further literature cited

  1. Bianchi, MG et al. (2017). Lipopolysaccharide Adsorbed to the Bio-Corona of TiO2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways. Front Immunol, 8 866.
  2. Li, Y et al. (2017). Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology, 11(9-10): 1157-1175.
Spotlight June 2021: Endotoxin – the reason for false-positive toxicity testing for advanced materials? 

Weitere Spotlights


Spotlight October 2022: The titanium dioxide debate – why the current ECHA and EFSA hazard classification should be questioned

Spotlight October 2022: The titanium dioxide debate – why the current ECHA and EFSA hazard classification should be questioned

Due to various reports and scientific studies, titanium dioxide (TiO2)was also banned in Europe this year (2022) for use as a food additive with the indication that it could possibly be carcinogenic to humans. Although no case of tumour induction in humans has been reported since the use of this material in micro but also […]

Read more

Spotlight July: Plastic Pollution and the Urgent Need for Comprehensive Action

Spotlight July: Plastic Pollution and the Urgent Need for Comprehensive Action

Plastic pollution has become a significant threat to the oceans, biodiversity, and ecosystems worldwide. Despite efforts to reduce plastic consumption, escalating plastic production continues to increase the magnitude of plastic pollution in the environment. In response to this crisis, the UN-Environmental Assembly (Link) adopted a resolution in March 2022 to develop a legally binding treaty […]

Read more

Spotlight September 2021: Wood, the raw material of the future?

Spotlight September 2021: Wood, the raw material of the future?

One of the greatest challenges facing humanity is to produce clean drinking water under the given circumstances of global warming, population growth and increasing littering. In September, we would like to present a review article that believes one approach to solve this problem is the use of nanoscale wood. In the review, “Advanced Nanowood Materials […]

Read more

Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework

The application of so-called “nanopesticides” (see also cross-sectional text Nanomaterials in plant protection products) is said to have two basic advantages: a smaller amount of pesticide is needed for the same agricultural area and the efficacy is improved. This is necessary to grow enough food for a still growing world population. However, this could also […]

Read more

Skip to content