>
Spotlight September 2020: Groundwater remediation with Carbo-Iron® – Risk or Benefit?
In September we would like to present a paper of the BMBF project Fe-Nanosit. The project dealt with the use of iron-containing nanomaterials in groundwater and wastewater remediation. A comprehensive assessment and weighing of benefits and possible environmental risks resulting from the application is now presented by the project partners in this paper.
Groundwater is indispensable for the drinking water supply in many areas of the world. Therefore, contamination of groundwater with pollutants requires purification before drinking water can be produced from it. There are different methods available for such a purification or remediation. The choice of the remediation method is made in such a way that as little damage as possible is caused to the respective ecosystem. In the present study, the in-situ remediation agent Carbo-Iron® was investigated and the benefits compared with possible harmful effects. From existing and newly collected ecotoxicity data in various organisms (water flea, algae, insects, bacteria), non-effect concentrations of 0.1 mg Carbo-Iron® per liter of water were derived. These concentrations were compared with measured and modelled environmental concentrations of Carbo-Iron®, as typically found in groundwater after remediation. For this purpose, a field study was evaluated, which was carried out in an aquifer contaminated with chlorinated hydrocarbons under an old laundry. The comprehensive final evaluation clearly showed that the total environmental risk was significantly reduced by the destruction of the chlorinated hydrocarbons by means of Carbo-Iron®.
This study is thus one of only a few to carry out a comprehensive risk assessment in a nanomaterials use case that involves a release into the environment (here into groundwater). In this case it could be clearly shown that the benefits of the application (the destruction of pollutants) clearly outweigh the risks (effects of Carbo-Iron® on organisms).
Original Publication:
Mirco Weil, Katrin Mackenzie, Kaarina Foit, Dana Kühnel, Wibke Busch, Mirco Bundschuh, Ralf Schulz, Karen Duis (2019) Environmental risk or benefit? Comprehensive risk assessment of groundwater treated with nano Fe0-based Carbo-Iron®. Science of The Total Environment, 677, 156-166, https://doi.org/10.1016/j.scitotenv.2019.04.360
Weitere Spotlights
Spotlight May 2021: Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials
The European Commission’s new Action Plan for a Circular Economy Green Deal, the new European Industrial Strategy as well as the Chemicals Strategy for Sustainability presented in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive economy in the European Union. These strategies require that any new material or product must not […]
Read moreSpotlight August 2023: From principles to reality. FAIR implementation in the nanosafety community
In the August 2023 Spotlight, we present a paper that addresses the implementation of FAIR (Findability, Accessibility, Interoperability and Reusability) Data in nanosafety research. The authors introduce the new AdvancedNano GO FAIR Implementation Network (see also https://www.go-fair.org/implementation-networks/overview/advancednano/) established as part of the GO FAIR initiative. The paper highlights the AdvancedNano GO FAIR Implementation Network’s support […]
Read moreSpotlight April 2021: Nanomaterials and Fake News – a commentary based on an example
In February 2021, the article “The invisible killer lurking in our consumer products” appeared, describing nanoparticles as a greater danger than Corona [1]. “The use of nanomaterials” would be “unregulated” and “nanomaterials are so small that they cannot be determined once they are part of a product”. So what is the truth of these statements? […]
Read moreSpotlight September: A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes
This paper describes a method for automatically assessing the quality and completeness of nanosafety data for the purpose of risk assessment. Steps to develop the methodology for assessing data completeness and the methodology for assessing quality are presented. The methodology is tailored to physicochemical and hazard (meta) data, but can also be configured with appropriate […]
Read more


