The resistance of plants to various pathogens is often increased in agriculture with various chemicals (“fertilizers”). A new direction is being taken with the use of nanoparticles. These can be sprayed on the plants. In the present study, the model plant Arabidopsis was used to investigate whether silicon dioxide nanoparticles (SiO2) can increase resistance to bacteria. For this purpose, plants were pretreated with silicon dioxide nanoparticles and then infected with bacteria. The plant hormone salicylic acid plays a major role in the defense against pathogens in plants. It is also used in human medicine as an antipyretic drug. Therefore, the content of salicylic acid in Arabidopsis leaves provided information about the protective function of silicon dioxide nanoparticles.
First of all, an uptake of the silicon dioxide nanoparticles via the pores of the leaves could be proven. Subsequently, a slow release of (ortho)silicic acid [Si(OH)4] occurs inside the leaves. (Ortho)silicic acid finally leads to the increased formation of salicylic acid by the plant, to which the actual protection against bacterial infections can be attributed. This shows that the administration of silicon dioxide nanoparticles was safer for the plant than the direct administration of (ortho)silicic acid. This is because the direct application of (ortho)silicic acid resulted in cellular stress responses, which were also visible by yellow leaves. In contrast, silicon dioxide nanoparticles in high concentrations showed no toxic effect, because the release of the effective (ortho)silicic acid is slow (depot effect). Only very small amounts of nanoparticulate silica are needed to exert a protective effect on the plant, making it a more cost-effective alternative comparing to other substances.
The authors caution that despite the beneficial properties of silicon dioxide nanoparticles for plant health, the long-term effects on farm workers, soil microorganisms and bees also need to be studied. Previous results with nematodes indicate a 36-fold lower toxicity of the nanoparticles, compared to liquid (ortho)silica. Thus, silica nanoparticles may be a safe and sustainable chemical for protection against plant diseases.
Original publication:
El-Shetehy M., Moradi A., Maceroni M., et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol. 2021;16(3):344-353. doi:10.1038/s41565-020-00812-0
More info on silica nanoparticles in our material text.
Weitere Spotlights
Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals
Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]
Read moreSpotlight August 2023: From principles to reality. FAIR implementation in the nanosafety community
In the August 2023 Spotlight, we present a paper that addresses the implementation of FAIR (Findability, Accessibility, Interoperability and Reusability) Data in nanosafety research. The authors introduce the new AdvancedNano GO FAIR Implementation Network (see also https://www.go-fair.org/implementation-networks/overview/advancednano/) established as part of the GO FAIR initiative. The paper highlights the AdvancedNano GO FAIR Implementation Network’s support […]
Read moreSpotlight March 2023: How can photovoltaics be made safe and sustainable?
Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, […]
Read moreSpotlight February 2022: Probabilistic risk assessment – the keystone for the future of toxicology
The basics of toxicology are constantly being reconsidered, and the approach to risk assessment is therefore constantly being put to the test, because, as William Osler is cited in this publication, “Medicine (toxicology) is a science of uncertainty and an art of probability“. In this recent paper, the team around Thomas Hartung (Johns-Hopkins University/University of […]
Read more