
Plastic pollution has become a significant threat to the oceans, biodiversity, and ecosystems worldwide. Despite efforts to reduce plastic consumption, escalating plastic production continues to increase the magnitude of plastic pollution in the environment. In response to this crisis, the UN-Environmental Assembly (Link) adopted a resolution in March 2022 to develop a legally binding treaty to address global plastic pollution. However, the resolution falls short in addressing toxicity risks associated with plastics.
The article by Alva et al. proposes categorizing plastics as Persistent, Bioaccumulative, and Toxic (PBT) pollutants, considering their long-range transport and harmful effects on the environment. By applying the PBT framework, governments can control or eliminate the manufacture and use of harmful plastics. The article provides scientific evidence supporting the PBT criteria, highlighting the persistence, bioaccumulation potential, and toxicity of plastics. The adverse effects caused by plastic particles are attributed to both physical characteristics and chemicals leaching from the plastic. Chemicals added during production, as well as pollutants sorbed from the environment, contribute to the toxicity.
The adoption of the PBT framework is crucial to mitigate micro- and nanoplastic pollution, reinforcing the UNEA-Treaty and promoting global plastic governance. Urgent policy decisions, along with regulatory enforcement, are needed to cap and reduce plastic production and implement sustainable end-of-life solutions. Equitable interventions and equal access to pollution prevention strategies are vital to address the inequality gap and promote environmental justice in plastic pollution management.
Original Publikation:
Alava, J J et al. (2023). A Call to Include Plastics in the Global Environment in the Class of Persistent, Bioaccumulative, and Toxic (PBT) Pollutants. Environ. Sci. Technol. 2023, 57, 22, 8185–8188.

Weitere Spotlights
Spotlight July 2022: New definition on nanomaterials published
The European Union has published a new definition for nanomaterials as of June 2022. It is recommended that this be used as a basis for future legislation. The new documents can be found on the EC website. In the new “nanodefinition”, the essential components such as the origin or the size range of the particles […]
Read moreSpotlight July 2021: The Path to Digital Material Research – It is never too late to start
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm […]
Read moreSpotlight September 2021: Wood, the raw material of the future?
One of the greatest challenges facing humanity is to produce clean drinking water under the given circumstances of global warming, population growth and increasing littering. In September, we would like to present a review article that believes one approach to solve this problem is the use of nanoscale wood. In the review, “Advanced Nanowood Materials […]
Read moreSpotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.
Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). […]
Read more