>
Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process
Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and resin ingredients can be separated without harming the materials. The process is not limited to rotor blades but can be applied to all composite materials. Particularly, because of the recovery of the expensive carbon fibres, this method is worthy of attention and leads to a better circular economy, thus, to improved sustainability.
Composite materials based on synthetic resins, usually reinforced with carbon fibres, are designed for long durability and are therefore fundamentally difficult to degrade. Until now, they have been stored as waste in landfills and thus removed from the cycle of materials.
Scientists at Aarhus University and the Danish Technological Institute have now filed a patent application for a process that, based on a catalyst containing ruthenium and various solvents, can break down the epoxy matrix and expose the carbon fibres without damaging them. The ingredients bisphenol A and the glass or carbon fibres are recovered and can be reused.
However, ruthenium is a rare and expensive metal, and the efficiency of the process has not yet been scaled-up to industrial level, but it is more than a glimmer of hope on the road to full recovery of the highly stable composites.
Original publication:
Ahrens, A et al. (2023). Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature, 617, 730–737
Weitere Spotlights
Spotlight December 2021: Silica nanoparticles improve plant disease resistance
The resistance of plants to various pathogens is often increased in agriculture with various chemicals (“fertilizers”). A new direction is being taken with the use of nanoparticles. These can be sprayed on the plants. In the present study, the model plant Arabidopsis was used to investigate whether silicon dioxide nanoparticles (SiO2) can increase resistance to […]
Read moreSpotlight October 2023: Improved hydrogen production through novel catalyst made of three metals
Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]
Read moreSpotlight November 2021: Safe Materials from Scratch – Safe-by-Design in Materials Research
Advances in the field of materials science continue to amaze us with nanoscale materials with extraordinary chemical, electrical, optical, and numerous other properties. However, some nanoscale materials have different toxicological profiles compared to the same bulk material. Since safety issues are usually addressed just before launching a product into the market, safety issues may be […]
Read moreSpotlight June 2021: Endotoxin – the reason for false-positive toxicity testing for advanced materials?
Advanced materials, but also nanomaterials are closely examined to determine whether they trigger biological effects that could be harmful to humans and the environment before they are used in products. This also includes such materials as titanium dioxide, which has been used in a wide variety of products for more than 50 years. A particularly […]
Read more

