Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Home > Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Previously virtually impossible and a huge problem: fibre-reinforced resin composites (epoxides) were not recyclable, and wind turbine rotor blades, for example, add up to a waste pile of 43 million tons by 2050. Researchers have now taken an important first step in “reprocessing” these composites and catalytically dissolving them so that the carbon fibres and resin ingredients can be separated without harming the materials. The process is not limited to rotor blades but can be applied to all composite materials. Particularly, because of the recovery of the expensive carbon fibres, this method is worthy of attention and leads to a better circular economy, thus, to improved sustainability.

Composite materials based on synthetic resins, usually reinforced with carbon fibres, are designed for long durability and are therefore fundamentally difficult to degrade. Until now, they have been stored as waste in landfills and thus removed from the cycle of materials.

Scientists at Aarhus University and the Danish Technological Institute have now filed a patent application for a process that, based on a catalyst containing ruthenium and various solvents, can break down the epoxy matrix and expose the carbon fibres without damaging them. The ingredients bisphenol A and the glass or carbon fibres are recovered and can be reused.

However, ruthenium is a rare and expensive metal, and the efficiency of the process has not yet been scaled-up to industrial level, but it is more than a glimmer of hope on the road to full recovery of the highly stable composites.

 

Original publication:

Ahrens, A et al. (2023). Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature, 617, 730–737

Spotlight June 2023: New catalytic process for recovering important materials from composites in a single process

Weitere Spotlights


Spotlight March 2023: How can photovoltaics be made safe and sustainable?

Spotlight March 2023: How can photovoltaics be made safe and sustainable?

Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, […]

Read more

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

Spotlight February 2021: Nanoobjects in the COVID-vaccine – scientifically correct?

The COVID-19 pandemic induces very different reactions of people on the internet (https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm) and in the social networks. Without following the conspiracy theories as “5G nanochip hidden in COVID vaccines” some news as “COVID vaccines induce allergic reactions” should be scientifically recognised. The picture from the 5G-nanochip whose plan goes viral on the internet is […]

Read more

Spotlight May 2023: Dual energy – edible batteries

Spotlight May 2023: Dual energy – edible batteries

An Italian research group reports on edible batteries that supply electric current and can be digested as food, thus providing energy a second time. What sounds funny at first has a serious background, because in medicine, power sources are needed that could be transported through the digestive tract and possibly remain in the body unintentionally, […]

Read more

Spotlight January 2021: Nanoplastics challenge – How to improve tracking of nanopolystyrene distribution in the environment.

Spotlight January 2021: Nanoplastics challenge – How to improve tracking of nanopolystyrene distribution in the environment.

In January, we present a paper published in the Nature Journal communications materials. The article focuses on the development of a new detection method of nanopolystyrene. The method not only makes it possible to detect nanoplastics in the environment for the first time, but also to determine their accumulation in plants and animals. Nanoplastics, which […]

Read more

Skip to content