Spotlight March 2022: Safe Materials from Scratch – Safe-by-Design-Concept in action

Home > Spotlight March 2022: Safe Materials from Scratch – Safe-by-Design-Concept in action

In recent decades, German research on nanomaterials and new, innovative materials has been widely expanded by material safety aspects. European initiatives also pay significant attention to this: both the European Union (EU) Green Deal, and the Chemicals Strategy for Sustainability (CSS) aim to create a sustainable, climate-neutral economy with sustainable and safe chemicals and products, while better protecting human health and the environment. The focus is on fostering innovation while addressing global challenges.

The Safe-by-Design (SbD) strategy for nanomaterials and innovative materials is one approach to address precisely these challenges (see also Spotlight Research of November 2021). Risks to humans and the environment should ideally be identified, assessed, and reduced on an early stage of the development process. The European Horizon 2020 project NanoRegII also deals with safe-by-design and is the first project that has now conducted a practical test of the safe-by-design concept. The NanoRegII safe-by-design strategy was implemented at six companies. The experience gained was then evaluated and guidelines for practical implementation of the safe-by-design strategy for the future were developed. In addition to being informative, the guidelines also contain several tools that are intended to help identify risks at an early stage. This should enable an assessment at each step in the innovation process as to whether the innovation should be continued and, if so, which safe-by-design measures need to be further applied to reduce uncertainties. The guidelines thus offer a first approach that can be adapted by each company to its specific requirements for innovation.

 

Original Publication:

Sánchez Jiménez, A. et al 2022 Safe(r) by design guidelines for the nanotechnology industry. NanoImpact 25, 100385.

 

Spotlight March 2022: Safe Materials from Scratch – Safe-by-Design-Concept in action

Weitere Spotlights


Spotlight December 2022: Fighting tumors with micro robots

Spotlight December 2022: Fighting tumors with micro robots

When we, the DaNa team as operators of the website nanopartikel.info, write about nanobots, i.e. nanometre-sized machines, we point out that these machines belong to science fiction, may even remain a utopia – i.e. never realisable. On the significantly larger micro-scale, however, small machines are conceivable that could help in the therapy of diseases, e.g. […]

Read more

Spotlight December 2020: Rethinking Nanosafety – Part II

Spotlight December 2020: Rethinking Nanosafety – Part II

In December we would like to draw attention to the special issue: Rethinking Nanosafety – Part II in small. In the July Spotlight we already presented Part I. This special issue “Rethinking Nanosafety – Part II” also features research papers by renowned scientists in the field of nanosafety research. The first part of this special […]

Read more

Spotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish

Spotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish

Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]

Read more

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Spotlight October 2023: Improved hydrogen production through novel catalyst made of three metals

Hydrogen is one of the important energy carriers of the future when it comes to climate-relevant energy supply. For example, surplus electricity from wind turbines or solar plants can be converted into hydrogen, allowing the otherwise unused energy to be stored for longer periods. This hydrogen can be used to power trucks and buses for […]

Read more

Skip to content