>
Spotlight October 2021: Nanopesticides – a proposal for a risk assessment framework
The application of so-called “nanopesticides” (see also cross-sectional text Nanomaterials in plant protection products) is said to have two basic advantages: a smaller amount of pesticide is needed for the same agricultural area and the efficacy is improved. This is necessary to grow enough food for a still growing world population. However, this could also entail increased risks for humans and the environment if, for example, these substances could be absorbed significantly better by crops, thus increasing their concentration in food, and/or that they could be absorbed better by humans or livestock, thus contributing to increased body burden.
To this end, an international group of scientists has considered and established a tiered approach to assess the risks to human health (Kah et al., 2021). Taking into account existing guidance documents and regulations (e.g., OECD guidelines), a strategy was developed on how a sustainable use of new nanopesticides could be enabled while considering safety-related issues. Two general principles were distinguished: first, the possibility of using nanoscale packages to deliver the active ingredients (so-called “nanocarriers”), and second, nanometer-sized active agent, such as metals or metal oxides that deliver active ions (e.g., silver or copper), with the nanoparticles usually delivered by protective sheaths made of polymers. For both variants, the critical steps for potential human exposure were identified (active ingredient preparation, field application, and postharvest exposure through food ingestion) and ways to investigate possible toxic effects that may be triggered.
The model shown here consists of 6 steps necessary to holistically describe nanopesticides and their health effects. In addition, the group further highlights important knowledge gaps that should be addressed in the near future.
Original publication:
Kah, M., Johnston, L.J., Kookana, R.S., Bruce, W., Haase, A., Ritz, V., Dinglasan, J., Doak, S., Garelick, H., and Gubala, V. (2021). Comprehensive framework for human health risk assessment of nanopesticides. Nat Nanotechnol 16, 955-964
Weitere Spotlights
Spotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish
Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]
Read moreSpotlight January 2023: Special issue on Methods and Protocols in Nanotoxicology published
In the first Spotlight of the new year, we present a special issue on methods and protocols in nanotoxicology published in the journal Frontiers in Toxicology. There are still too few harmonized protocols accepted by the scientific community. To improve this situation, project activities are started and special issues of journals like this one are […]
Read moreSpotlight April 2021: Nanomaterials and Fake News – a commentary based on an example
In February 2021, the article “The invisible killer lurking in our consumer products” appeared, describing nanoparticles as a greater danger than Corona [1]. “The use of nanomaterials” would be “unregulated” and “nanomaterials are so small that they cannot be determined once they are part of a product”. So what is the truth of these statements? […]
Read moreSpotlight December 2022: Fighting tumors with micro robots
When we, the DaNa team as operators of the website nanopartikel.info, write about nanobots, i.e. nanometre-sized machines, we point out that these machines belong to science fiction, may even remain a utopia – i.e. never realisable. On the significantly larger micro-scale, however, small machines are conceivable that could help in the therapy of diseases, e.g. […]
Read more


