>
Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.
Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). However, one process that occurs not visible to the naked eye is the decay of large pieces of plastic into smaller fragments (microplastics), which in turn decompose into even smaller particles, called Nanoplastic (more information about nanoplastic in the environment).
How exactly the process of decomposition due to weathering occurs and what exactly happens to nanoplastic particles was investigated in the paper presented here. The starting point for the investigation were plastic pellets in the medium size range of 100- 200 µm, which were exposed to laboratory weathering by water and solar radiation. In this manner, natural weathering by rain and solar radiation in Central Europe was imitated over a period of 1.5 years. The degradation could be divided into 3 main stages. First, the large fragments were smoothed by surface abrasion over a period of up to 17 days and smaller fragments detached (stage 1). After a period of at least 58 days, cracks formed on the plastic surface (stage 2). Finally, the cracks lead to the detachment of smaller particles (stage 3). Up to 14,000 nano- and microplastic particles could form from one original particle. The nanoplastic particles subsequently form larger agglomerates with microplastic particles. This could explain why individual nanoplastic particles are so difficult to detect in the environment. Environmental organisms will thus be exposed to nanoplastic and microplastic particles simultaneously. At the same time, nanoplastic particles bound to natural particles may also enter the food chain.
The experiments on the laboratory weathering of larger pieces of plastic into nano- and microplastic particles provide important insights into the environmental behavior of plastic. They also showed that there are different decomposition processes for different polymers.
Original Publication:
Menzel T., Meides N., Mauel A., et al. Degradation of low-density polyethylene to nanoplastic particles by accelerated weathering,
Science of The Total Environment 2022; 826 (154035). https://doi.org/10.1016/j.scitotenv.2022.154035
Weitere Spotlights
Spotlight October 2022: The titanium dioxide debate – why the current ECHA and EFSA hazard classification should be questioned
Due to various reports and scientific studies, titanium dioxide (TiO2)was also banned in Europe this year (2022) for use as a food additive with the indication that it could possibly be carcinogenic to humans. Although no case of tumour induction in humans has been reported since the use of this material in micro but also […]
Read moreSpotlight July 2021: The Path to Digital Material Research – It is never too late to start
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm […]
Read moreSpotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?
The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]
Read moreSpotlight December 2021: Silica nanoparticles improve plant disease resistance
The resistance of plants to various pathogens is often increased in agriculture with various chemicals (“fertilizers”). A new direction is being taken with the use of nanoparticles. These can be sprayed on the plants. In the present study, the model plant Arabidopsis was used to investigate whether silicon dioxide nanoparticles (SiO2) can increase resistance to […]
Read more


