
Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). However, one process that occurs not visible to the naked eye is the decay of large pieces of plastic into smaller fragments (microplastics), which in turn decompose into even smaller particles, called Nanoplastic (more information about nanoplastic in the environment).
How exactly the process of decomposition due to weathering occurs and what exactly happens to nanoplastic particles was investigated in the paper presented here. The starting point for the investigation were plastic pellets in the medium size range of 100- 200 µm, which were exposed to laboratory weathering by water and solar radiation. In this manner, natural weathering by rain and solar radiation in Central Europe was imitated over a period of 1.5 years. The degradation could be divided into 3 main stages. First, the large fragments were smoothed by surface abrasion over a period of up to 17 days and smaller fragments detached (stage 1). After a period of at least 58 days, cracks formed on the plastic surface (stage 2). Finally, the cracks lead to the detachment of smaller particles (stage 3). Up to 14,000 nano- and microplastic particles could form from one original particle. The nanoplastic particles subsequently form larger agglomerates with microplastic particles. This could explain why individual nanoplastic particles are so difficult to detect in the environment. Environmental organisms will thus be exposed to nanoplastic and microplastic particles simultaneously. At the same time, nanoplastic particles bound to natural particles may also enter the food chain.
The experiments on the laboratory weathering of larger pieces of plastic into nano- and microplastic particles provide important insights into the environmental behavior of plastic. They also showed that there are different decomposition processes for different polymers.
Original Publication:
Menzel T., Meides N., Mauel A., et al. Degradation of low-density polyethylene to nanoplastic particles by accelerated weathering,
Science of The Total Environment 2022; 826 (154035). https://doi.org/10.1016/j.scitotenv.2022.154035

Weitere Spotlights
Spotlight December 2021: Silica nanoparticles improve plant disease resistance
The resistance of plants to various pathogens is often increased in agriculture with various chemicals (“fertilizers”). A new direction is being taken with the use of nanoparticles. These can be sprayed on the plants. In the present study, the model plant Arabidopsis was used to investigate whether silicon dioxide nanoparticles (SiO2) can increase resistance to […]
Read moreSpotlight May 2023: Dual energy – edible batteries
An Italian research group reports on edible batteries that supply electric current and can be digested as food, thus providing energy a second time. What sounds funny at first has a serious background, because in medicine, power sources are needed that could be transported through the digestive tract and possibly remain in the body unintentionally, […]
Read moreSpotlight June 2022: From small to clever – What does the future hold for the safety and sustainability of advanced materials?
The smallest particles in materials research, nanoparticles, have occupied us intensively for more than 20 years to elucidate and further investigate their safety for humans and the environment. Now, however, the development is going from “small = nano” to “clever = advanced”, as discussed in a contribution by international scientists. Thereby, it is a great […]
Read moreSpotlight March 2021: Is Nanotechnology the Swiss Army Knife against Future Pandemics?
The COVID 19 outbreak has led to a fundamental rethinking of existing approaches to diagnosis, treatment, and prevention methods. The need for better and more efficient concepts is global and urgent. Nanotechnology has long been at the forefront of innovation and has led to advances in many different disciplines. Could this interdisciplinary field help develop […]
Read more