Spotlight March 2023: How can photovoltaics be made safe and sustainable?

Home > Spotlight March 2023: How can photovoltaics be made safe and sustainable?

Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, most of these materials contain toxic heavy metals, such as lead perovskite materials (material text perovskites) or lead quantum dots.
The review article addresses the question of how these novel photovoltaic materials can be made more sustainable in the future (basic text sustainability). For this purpose, in addition to the release scenarios of lead from solar cells due to environmental influences, their toxicity for humans and the environment is also considered, and avoidance strategies are shown that can effectively prevent the release of lead. These consist, for example, of reducing the lead content in photovoltaic modules or replacing lead with other, less critical elements (e.g. tin). There is also the possibility of coating solar cells or encapsulating the lead-containing components and thus protecting them from the effects of wind, rain and heat. Additives can also be used for stabilization (e.g. fullerenes). This can effectively prevent the release of lead into the environment.
Finally, recycling processes are summarized that allow the lead to be recovered and reused in new products. These processes can have tremendous environmental and economic benefits, as the release of lead into the environment from waste is prevented, and the reuse of the lead for new products is sustainable in the circular economy sense. It is clear at this point that many of the recycling processes presented rely on the use of large amounts of various solvents, which is also critical. The authors state that more research is needed for effective and sustainable recycling and suggest that recycling costs should be included for an economic consideration of lead-containing solar materials.
This article provides a comprehensive review of how higher efficiency ,but with critical heavy metals, solar materials needed for the energy transition could be made more sustainable, and the authors outline future research is needed on these materials, which are still in development.

Original-Publication:
Xingwen Lu, Dong Yan, Jiangtao Feng, Meng Li, Bo Hou, Zhe Li, Fei Wang
Ecotoxicity and Sustainability of Emerging Pb-Based Photovoltaics. Sol. RRL 2022, 6, 2200699

Spotlight March 2023: How can photovoltaics be made safe and sustainable?

Weitere Spotlights


Spotlight April 2021: Nanomaterials and Fake News – a commentary based on an example

Spotlight April 2021: Nanomaterials and Fake News – a commentary based on an example

In February 2021, the article “The invisible killer lurking in our consumer products” appeared, describing nanoparticles as a greater danger than Corona [1]. “The use of nanomaterials” would be “unregulated” and “nanomaterials are so small that they cannot be determined once they are part of a product”. So what is the truth of these statements? […]

Read more

Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.

Spotlight August 2022: Three-stage model for the formation of micro- and nanoplastic particles.

Plastic pollution is a global problem that will continue to affect humanity for more than 100 years. There is the visible pollution, e.g. plastic debris in the environment, which leads to death for many animals (because they mistakenly think the plastic is food and eat it or because they get caught in the plastic waste). […]

Read more

Spotlight August 2023: From principles to reality. FAIR implementation in the nanosafety community

Spotlight August 2023: From principles to reality. FAIR implementation in the nanosafety community

In the August 2023 Spotlight, we present a paper that addresses the implementation of FAIR (Findability, Accessibility, Interoperability and Reusability) Data in nanosafety research. The authors introduce the new AdvancedNano GO FAIR Implementation Network (see also https://www.go-fair.org/implementation-networks/overview/advancednano/) established as part of the GO FAIR initiative. The paper highlights the AdvancedNano GO FAIR Implementation Network’s support […]

Read more

Spotlight December 2020: Rethinking Nanosafety – Part II

Spotlight December 2020: Rethinking Nanosafety – Part II

In December we would like to draw attention to the special issue: Rethinking Nanosafety – Part II in small. In the July Spotlight we already presented Part I. This special issue “Rethinking Nanosafety – Part II” also features research papers by renowned scientists in the field of nanosafety research. The first part of this special […]

Read more

Skip to content