>
Spotlight March 2023: How can photovoltaics be made safe and sustainable?
Conventional photovoltaic systems often have only low efficiency, i.e. only a fraction of the solar energy is converted into electrical energy and made usable. For this reason, research is being conducted into innovative materials that can significantly increase the energy yield and thus also enable more electrical energy to be generated from renewable sources. However, most of these materials contain toxic heavy metals, such as lead perovskite materials (material text perovskites) or lead quantum dots.
The review article addresses the question of how these novel photovoltaic materials can be made more sustainable in the future (basic text sustainability). For this purpose, in addition to the release scenarios of lead from solar cells due to environmental influences, their toxicity for humans and the environment is also considered, and avoidance strategies are shown that can effectively prevent the release of lead. These consist, for example, of reducing the lead content in photovoltaic modules or replacing lead with other, less critical elements (e.g. tin). There is also the possibility of coating solar cells or encapsulating the lead-containing components and thus protecting them from the effects of wind, rain and heat. Additives can also be used for stabilization (e.g. fullerenes). This can effectively prevent the release of lead into the environment.
Finally, recycling processes are summarized that allow the lead to be recovered and reused in new products. These processes can have tremendous environmental and economic benefits, as the release of lead into the environment from waste is prevented, and the reuse of the lead for new products is sustainable in the circular economy sense. It is clear at this point that many of the recycling processes presented rely on the use of large amounts of various solvents, which is also critical. The authors state that more research is needed for effective and sustainable recycling and suggest that recycling costs should be included for an economic consideration of lead-containing solar materials.
This article provides a comprehensive review of how higher efficiency ,but with critical heavy metals, solar materials needed for the energy transition could be made more sustainable, and the authors outline future research is needed on these materials, which are still in development.
Original-Publication:
Xingwen Lu, Dong Yan, Jiangtao Feng, Meng Li, Bo Hou, Zhe Li, Fei Wang
Ecotoxicity and Sustainability of Emerging Pb-Based Photovoltaics. Sol. RRL 2022, 6, 2200699
Weitere Spotlights
Spotlight July 2021: The Path to Digital Material Research – It is never too late to start
Machine Learning, Artificial Intelligence, Big Data…. Have you read these words lately? No, these are not just buzzwords. The digitalisation of science is an evolving topic that is gaining importance with each passing day. That is why this month we would like to introduce you to the article “Digital Transformation in Materials Science: A Paradigm […]
Read moreSpotlight April 2021: Nanomaterials and Fake News – a commentary based on an example
In February 2021, the article “The invisible killer lurking in our consumer products” appeared, describing nanoparticles as a greater danger than Corona [1]. “The use of nanomaterials” would be “unregulated” and “nanomaterials are so small that they cannot be determined once they are part of a product”. So what is the truth of these statements? […]
Read moreSpotlight July 2022: New definition on nanomaterials published
The European Union has published a new definition for nanomaterials as of June 2022. It is recommended that this be used as a basis for future legislation. The new documents can be found on the EC website. In the new “nanodefinition”, the essential components such as the origin or the size range of the particles […]
Read moreSpotlight February 2023: New sustainable and promising method to give cotton textiles an antiviral and antibacterial finish
Textiles have been the subject of research into functionalization for many years, especially also to repel bacteria and viruses. Since the development of nanotechnological processes, there have been many attempts to incorporate UV protection with nano-titanium dioxide, or to provide textiles with anti-bacterial properties with nanosilver (see cross-sectional text “Nanoparticles in Textiles”). But nanosilver has […]
Read more


